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Abstract

de la Riva Massaad, Daniel; Griffiths, Simon (Advisor). An invi-
tation to Noise Sensitivity and applications to quenched
Voronoi Percolation. Rio de Janeiro, 2020. 111p. Dissertação de
Mestrado – Departamento de Matemática, Pontifícia Universidade
Católica do Rio de Janeiro.

We begin this dissertation by giving an introductory overview of the
topics of Noise Sensitivity and Percolation. As these areas may be unfamiliar
to many graduate students, we present the material in an accessible way, with
the objective of publicising important techniques and results in these areas. We
shall also introduce the model of Voronoi Percolation and present results of
Vincent Tassion on crossing probabilities in this model. In the last two chapters
we consider Noise Sensitivity of Quenched Voronoi Percolation. In particular,
in the penultimate chapter we present the results of the paper "Quenched
Voronoi Percolation" by Daniel Ahlberg, Simon Griffiths, Robert Morris and
Vincent Tassion, and in the final chapter we prove a theorem which improves
one of the bounds of that paper.

Keywords
Noise Sensitivity; Martingale; Fourier Analysis; Boolean Function; Per-

colation; Efron-Stein Inequality; Quenched.
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Resumo

de la Riva Massaad, Daniel; Griffiths, Simon.Um convite à "Sen-
sibilidade a Ruído" e aplicações para Percolação de Voro-
noi do tipo quenched. Rio de Janeiro, 2020. 111p. Dissertação de
Mestrado – Departamento de Matemática, Pontifícia Universidade
Católica do Rio de Janeiro.

Nós começamos essa dissertação com um panorama geral e introdutório
dos tópicos de "Sensibilidade a Ruído" e "Percolação" . Como essas áreas podem
ser desconhecidas por muitos estudantes de pós-graduação, nós apresentamos
o material de uma maneira acessível, com o intuito de divulgar importantes
técnicas e resultados dessas áreas. Nós também vamos introduzir o modelo
para Percolação de Voronoi e apresentar resultados sobre probabilidades de
cruzamentos neste modelo. Nos últimos dois capulos nós iremos considerar
Sensibilidade a Ruído para Percolação do tipo "quenched". Em particular,
no penúltimo capítulo nós vamos apresentar resultados do artigo "Quenched
Voronoi Percolation" de Daniel Ahlberg, Simon Griffiths, Robert Morris e
Vincent Tassion, e no último capítulo provaremos um teorema que melhora
uma das cotas deste artigo.

Palavras-chave
Sensibilidade a Ruído; Martingal; Análise de Fourier; Função Booleana;

Percolação; Desigualdade de Efron-Stein; Quenched.
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1
Introduction

When I was an undergraduate student I often found it quite hard to
understand the titles of dissertations and seminars. Not only were they long
and unattractive, often they were completely incomprehensible.

Even now, as a graduate student, I still get confused by these titles. And
it was not long until I noticed that my first work, my master’s thesis, has an
extremely long, unattractive, and incomprehensible title.

But if I want to be sincere with my former self, my first goal is to make
this title more comprehensible for any math student that desires to read this
text. Let us, then, begin our explanation.

What is Percolation? From the Latin word “percolare”, percolation refers
to the movement and filtering of fluids through porous materials. From a
mathematical point of view, it was first introduced in the article “Percolation
process”, by Broadbent and Hammersley [6]. This paper studied in a general
way how the random properties of a “medium” influence the percolation of a
“fluid” through it, for example, water penetrating a porous stone.

As usual, they formalized this model and turned it into a problem that
can be analyzed from a mathematical perspective. Suppose that a lump of
porous material is placed in a bucket of water, and we wish to know how
much of the interior becomes wet. Suppose also that we can represent the pore
system of the material as a maze, in which the water is able to flow through
sufficiently large pores to the interstices of the interior. Consider that each
possible “tunnel” is open independently with probability p (for some p ∈ [0, 1])
and water may pass through open tunnels. Will the water reach a point near
the center of the stone? For how many paths will this happen? And what
proportion of a porous stone is wetted? And from that, the first percolation
model was born. Instead of imagining stones, we may take rectangles formed
by the grid of Z2 and, instead of imagining channels, we may consider the
edges of Z2 and assign independently for each one of them, probability p of
being “open” and 1−p of being “closed”. We include the following image from
[10].
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Chapter 1. Introduction 11

Figure 1.1: The contour represents the boundary of the stone, the black edges
represent the open tunnels and the empty edges represent the closed tunnels.
Note that x is wetted but y is not.

The probability of wetting points near the center for large-scale stones
is related to the existence of infinite connected “clusters” in Z2. We can see
this by observing if a center point is wetted, there must be an open path from
the boundary of the stone to it. If we take larger structures, more tunnels will
appear and the grid will get bigger. So, it is natural to study the existence of
such components since they will imply those events for any size of stones. One
may note that for p = 0 there is no edge and for p = 1 we have all edges of
Z2. So what is happening with the intermediate probabilities? Is there a sort
of critical point which changes the behavior of this process? These questions
will be addressed in Chapter 3, together with a more formal definition of our
model.

Now that we know the meaning of Percolation, and specifically, Percola-
tion on Z2, we may wonder what is Quenched Voronoi Percolation. But first,
we must study the meaning of Voronoi Percolation.

In Voronoi Percolation, we still want to analyze properties such as the
existence of infinite connected components, but instead of working with Z2,
we will work with R2. Which types of crossings will we be looking for now?
To introduce a natural model in R2 we will define the notion of Voronoi
Tessellation informally.

First developed by the mathematician Georges Voronoi in the article
“Nouvelles applications des parametres continus a la theorie des formes quadra-
tiques. Premier memoire. Sur quelques proprietes des formes quadratiques pos-
itives parfaites” from 1908 [19], a Voronoi Tessellation looks at chosen points
( in our scenario, often chosen in a random way ) in a rectangle and define
their territory by the region closest to each point. This territory will be named
a “tile”, and will also look like one. One can also extend the Tessellation to
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Chapter 1. Introduction 12

the whole plane, by choosing points with random processes in R2, such as the
Poisson Point Process.

Now imagine that and my advisor Simon and I are playing a war game.
First, Matheus (one of Simon’s students) will pick up, let’s say n = 10 points,
and distribute them in a random way across the whiteboard. Afterwards, Simon
and I will try to conquer each territory. Since we are both fair people, a coin
will be flipped for each tile and be given color red when it flips heads (open),
and blue when it flips tails (closed). However, maybe Simon is not so fair as
I thought and rigs up the coin, in such a way that the probability of landing
heads will be now 0 ≤ p ≤ 1. We can see that a very similar problem arises.
Will there be a way to cross from the boundary of the whiteboard to the
middle of it in red? Or maybe a path that uses only red tiles from the left to
the right side of the rectangle ? Again, it is trivially not possible for p = 0 and
trivially possible for p = 1. But, since the tiles now have different sizes and
shapes, our new structure is much more uncertain. Will we be able to achieve
similar properties to Z2? In Chapter 4 the model will be properly introduced
and some of these questions will be answered, mainly based on the work of
Vincent Tassion “Crossing probabilities for Voronoi percolation” [18].

Figure 1.2: Here we look at an excerpt of the Voronoi Percolation Process in
R2. The image was take from the cover of [4].

Now let’s explain the “Quenched” part. By “Quenched Voronoi Percola-
tion” we mean a Voronoi Percolation processes (as described above), in which
we have already know (and have fixed) the tiles. The only thing yet to be
revealed is the color of each tile. One can note that now, the probability of
some events will depend on the model thus generated, since, for example, the
position of the points alters the probability of a left to right crossing. We finally
reach our last complicated expression. What is Noise Sensitivity and how does
it relate to Quenched Voronoi Percolation?
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Chapter 1. Introduction 13

In contrast with our previous notions, this is an surprisingly recent idea.
It was first introduced in 1999 in the seminal paper by Benjamini, Kalai,
and Schramm “Noise Sensitivity of Boolean Functions and applications to
Percolation” [2]. This is a more refined concept and in order to illustrate it, we
will give the example of an election. Let us say that Simon and his students
will decide who is the funniest, Matheus or Daniel. Note that if, apart from
Matheus and Daniel, Simon and his students form a group of 11 people this
election may be characterized by a so-called Boolean function:

f : {0, 1}11 → {0, 1},

where 0 represents the votes for Matheus and 1 represents the votes for Daniel.
The outcome of this function is the winner.

But as you may have noticed, there can be many possible ways to organize
this election. Maybe it will be the “fairest” system, which is the democracy:
The one who receives the highest number of votes wins! Maybe Simon is a sort
of Dictator, and only his vote counts. Or maybe if only one person votes for
Matheus, he is automatically the winner.

Now imagine that Igor, an outsider, and a former student of Simon,
arrives, and with probability ε > 0 chooses each person and alters their vote.
Will the outcome easily change or is it a little bit more stable than Igor
thought?

Noise Sensitive functions, as the name suggests, are the ones that will
easily change their outcome with small disturbances. So, in those cases,
knowing most of the information still doesn’t help us a lot in predicting the
outcome. In our example, Quenched Voronoi Percolation, with p = 1/2 (which
is particularly interesting as it is the critical probability), the event of a red left-
to-right crossing in a rectangle will be asymptotically noise sensitive. That is, in
a large rectangle, with a given tiling and coloring, if a small proportion of colors
are changed (at random) we have almost no information about whether the
crossing will occur. The definitions and classical theorems of Noise Sensitivity
are presented in Chapter 5.

We now give an overview of the dissertation. After Chapter 2, in which we
introduce basic tools and concepts, we present an account of major results in
the areas of Percolation on Z2 (Chapter 3), Voronoi Percolation on R2 (Chapter
4) and Noise Sensitivity (Chapter 5). Our hope is that these Chapters will be
accessible to interested students.

We then turn to Quenched Voronoi Percolation in Chapter 6. We will
discuss results from the paper “Quenched Voronoi Percolation”, by Ahlberg,
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Chapter 1. Introduction 14

Griffiths, Morris, and Tassion [1] in 2015. At some moments in that paper there
are important details which are left a little vague. This does not represent a
major problem, however, and we explain how these arguments can be made
completely rigorous.

The authors proved a major conjecture of [2]. Essentially, the conjecture
states that knowing the Voronoi Tessellation, but not knowing the colors of
the cells, gives almost no information whether or not a red horizontal crossing
exists.

Finally, in Chapter 7, we shall present a new result (Theorem 7.1) which
improves on the probability bound given by Theorem 1.1 of [1] (which appears
here as Theorem 6.2). We remark that many of the ideas involved in the proof
arose in discussions with Daniel Ahlberg and Simon Griffiths.

We cannot at this point give a full description of our approach. However,
we may mention that it is based on the idea of proving subsequently stronger
bounds at larger scales by iterating previous results. To make this approach
rigorous we need to better understand the relation between different models
and make some other changes to the proofs.

We also state and prove some classic inequalities that were used through-
out this thesis in the Appendix.
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2
Basic Tools

In this Chapter we present the basic tools that we will throughout
this dissertation. We present Martingales in Section 2.1, Boolean functions
in Section 2.2 and Fourier Analysis on the hypercube in Section 2.3.

2.1
Martingale

In this Section we will define the concepts of conditional expectation
andMartingale. Since this is a very well known idea, and it is often presented
in basic probability courses, we will only list the properties that we will use
and refer to [7] for proofs and details.

Definição 2.1 Given a probability space (Ω,F0, P ), a σ-field F ⊆ F0, and
a random variable X ∈ F0 with E[|X|] < ∞, we define the conditional
expectation of X given F , E(X|F) to be any random variable Y , such
that

1. Y ∈ F , i.e., Y is F−measurable.

2. For all A ∈ F ,
∫
AXdP =

∫
A Y dP.

We can actually verify that Y always exists and Y is unique.

We now list a series of properties that will be used.

Theorem 2.2 Assume E[|X|], E[|Y |] <∞. Then:

1. E(aX + Y |F) = aE(X|F) + E(Y |F).

2. If X ≤ Y, then E(X|F) ≤ E(Y |F).

3. If X is independent of 1A, for every A ∈ F , then E(X|F) = E(X)

4. If X is F-measurable, then E(X|F) = X.

5. If X is F−measurable, then E(XY |F) = XE(Y |F).

6. We have the Law of total expectation: E(E(X|F)) = E(X).

7. Tower property: If F1 ⊆ F2 ⊆ F0, we have E(E(X|F2)|F1) = E(X|F1).
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Now that we have listed those properties, we can define a martingale.

Definição 2.3 Let Fn be a filtration, i.e., an increasing sequence of σ−fields.
A sequence Xn is said to be adapted to Fn if Xn ∈ Fn for all n. If Xn is a
sequence with

1. E[|Xn|] <∞.

2. Xn is adapted to Fn.

3. E(Xn+1|Fn) = Xn for all n,

Then, X is said to be a martingale with respect to Fn. If in the last
definition, = is replaced by ≤ or ≥, then X is said to be a supermartingale
or submartingale, respectively.

Theorem 2.4 (Martingale Convergence Theorem) If Xn is a sub-
martingale with supnE[X+

n ] <∞, then as n approaches infinity, Xn converges
almost surely to a limit X with E[|X|] <∞.

We remark that there are many interesting regarding martingales, butt
we won’t need them in this thesis. We, one more time, refer the interested
reader to [7].

2.2
Boolean Functions

The following Sections will be largely based on the definitions and
examples defined in [9].

The concept of Boolean functions is extremely important in many areas
such as Computer Science and Logic. As the name suggests, a Boolean function
is a function whose argument and outcome gets assigned with two possible
values, often interpreted as False Value and Truth Value. In the introduction,
this concept was stated in an informal way and it was directly related to the
idea of an election. More generally:

Definição 2.5 A Boolean function is a function from the Hypercube Ωn :=
{−1, 1}n into either {0, 1} or {−1, 1}.

The Hypercube is more often defined on {0, 1}n. But for Fourier Analysis on
the Hypercube, developed in the next Section, using Ωn = {−1, 1}n is more
convenient, and since there is no fundamental difference between both of them,
we will stick with the latter choice.

Sometimes it will be more convenient to work with functions with image
in {−1, 1}, while at other times {0, 1} is preferable. Again, there is no essential
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difference between them since all the theorems stated for Boolean functions
can be attained for both.

In some cases we may even consider f : Ωn → R, which is not a Boolean
function.

Since we will be interested in working in a probabilistic setting, the
Hypercube may be endowed with the uniform measure P, where if w :=
wn = (w1, ..., wn) ∈ Ωn, and X is the discrete uniform random variable,
then P(X = w) = 1/2n for every w ∈ Ωn and E denotes the corresponding
expectation.

Occasionally, Ωn will be endowed with the weighted product measure
Pp(X = w) = p|W−1|(1− p)|W1|, where |W−1| represents the number of −1′s in
w, and |W1| represents the number of 1′s in w. Ep will denote the corresponding
expected value.

Another useful concept will be that of monotone functions. For
vectors, x and y, we write x ≤ y if xi ≤ yi for all i.

Definição 2.6 A function f is monotone, if f(x) ≤ f(y) whenever x ≤ y.

This is an important class of functions since they have a number of interesting
properties, and some theorems, will be valid just for them.

We will now introduce three basic examples that will have a number of
interesting properties. In particular, we may consider the notion of influence
which is related to changing the outcome of the function. A formal definition
will be given in Chapter 3. We will use the language of an election to be more
intuitive to the readers new to this area. We also encourage them to verify
which of these functions are monotone.

Example 2.7 (Dictator)

Dictn(x1, ..., xn) := x1.

As you expect from a dictator, the first “voter” determines the outcome of this
function. One may note that only the first bit has influence over the election.

Example 2.8 (Parity)

Parn(x1, ..., xn) :=
n∏
i=1

xi.

The outcome of this function is determined by whether the number of −1′s in
w is even or odd. In this example every “voter” has the chance to change the
outcome of this function. So, all of them have total influence.
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Example 2.9 (Majority) Let n be an odd number and define

Majn(x1, ..., xn) := sign(
n∑
i=1

xi).

This function exemplifies the idea of a democracy. We can see that all the
“voters” have the same influence, and a “voter” decides the fate of the election
only when the sum of the other votes is zero.

What would be the influence of each voter in this example? To even
contemplate this question would require a more formal definition of influence.
The enthusiastic reader may try to think of a possible definition that would
correspond to our intuition. See Chapter 3 for details.

We now give two more complicated examples:

Example 2.10 (Tribes) Partition [n] = (1, ..., n) into disjoint blocks of
length log2(n)− log2(log2(n)). Define fn to be 1 if there exists at least one block
that contains only 1′s, and 0 otherwise. Note that this represents an election
which must have an unanimity of 1′s, in at least one tribe, to elect 1. We can
see that for a “voter” to decide the outcome of the election, it must be in a
tribe with only 1-voters and we can’t have unanimity in any other tribe. Only
in this case the “voter” will influence the result of the election. The choice
of the length is exactly made to achieve an interesting result regarding such
quantity.

Example 2.11 (Crossings in Z2) We start with the graph Z2 which has
vertices being the set Z2 and edges between pairs of points at Euclidean distance
1. Consider Sn := [0, n]× [0, n], to be the subgraph determined by such vertices.
We may now, color each edge independently with probability 0 ≤ p ≤ 1 for the
color “red” (open), and 1 − p for the color “blue” (closed). Define HSn to be
the event that there exists a red path through the edges from {0} × [0, n] to
{n} × [0, n]. We call it a horizontal red crossing. Define fn := 1Sn, which
represents the indicator of the even Sn. Understanding the influence of such
events turns out to be an extremely interesting and difficult problem. The image
below represents the 4-arm event, for a similar and more natural model. This
is exactly the case of a decisive voter (when it is far from the boundary). We
may also define Crossings for the Voronoi Tessellation in a similar way. This
will be made more precise in Chapter 4.
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Figure 2.1: In this image we look at a Hex Board Game. It is a more natural
environment to look at the 4-arm event. For those who are not familiar with
this game, we take a board composed of Hexagons with two parallels red walls,
and two parallels blue walls as in the drawing. Each player chooses a color and
the winner is the one can get a crossing from one side to the other with the
same color as the side. There can be only one winner, so if you make a drawing
of the board you can note that a red crossing blocks a blue on and vice-versa.
As it can be seen in the image the black node x decides the winner of such
game. Note that if it is colored blue, fn = 0 and if it is red fn = 1.

2.3
Fourier Analysis on the Hypercube

Another useful tool will be Fourier analysis on the hypercube. In this
Section we will introduce some basic definitions and calculate some of the
so-called Fourier-Walsh Coefficients for some of the previous examples.

It is natural, when applying Fourier Analysis, to consider the set
L2({−1, 1}n), of all real-valued functions on Ωn endowed with the following
inner product:

〈f, g〉 :=
∑

x1,...,xn

2−nf(x1, ..., xn)g(x1, ..., xn)

= E[fg] for all f, g ∈ L2(Ωn)

For any S ⊆ {1, ..., n}, let χS be a function on Ωn defined by

χS(w) :=
∏
i∈S

xi.

Observe that χ∅ ≡ 1. Also note that this family of 2n elements forms an
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orthonormal basis for Ωn. To see this, first note that we have that for any S

〈χS, χS〉 =
∑

x1,...,xn

2−n
∏
xi∈S

x2
i = 1,

and that for S 6= T

〈χS, χT 〉 = 2−n
∑

x1,...,xn

∏
i∈S4T

xi = 0,

by symmetry. Note that4 represents the symmetric difference. Finally, observe
that any f ∈ L2(Ωn) may be represented as

f(x) =
∑

a1,...,an

f(a)1{a}(x),

with
1{a}(x) :=

(1 + a1x1

2

)
...
(1 + anxn

2

)
.

Considering, then, the monomials χS, we get that:

f =
∑

S⊆{1,...,n}
f̂(S)χS,

and so it forms a basis. The f̂(S) are called the Fourier-Walsh coefficients
of f . They also satisfy that

f̂(S) := 〈f, χS〉 = E[fχS].

Because of that, we have that our representation is unique given the basis χS.
Note that f̂(∅) = E[f ] and we have the Parseval’s formula

E[f 2] =
∑

S⊆{1,...,n}
f̂ 2(S).

We define one more concept. We also remark that all of those concepts, that
may seem slightly arbitrary, will be extremely useful in Chapter 5.

Definição 2.12 For any function f : Ωn → R, the energy spectrum Ef i
defined by

Ef (m) :=
∑
|S|=m

f̂(S)2,m ∈ {1, ..., n}.

We will now calculate the Fourier expansion of some of the previous
examples.

Parity easily gives us that f = χ[n], since this is exactly the definition
of the function, and as we stated, the representation is unique.
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Dictator also easily gives the expansion directly by the definition of the
function f = χ1.

Majority has a slightly more complicated expansion. First, note that if
|S| is even we have that M̂ajn(S) = 0, since Majn is an odd function. For
|S| = k odd we refer to Theorem 5.19 of [14] which states that

M̂ajn(S) = (−1)
k−1

2

(n−1
2

k−1
2

)
(
n−1
k−1

)2n−1
(
n− 1
n−1

2

)
.

With that in mind we end this introductory Section. Now that we have
the most important tools, we can begin the most important ideas of this thesis.
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3
Percolation on Z2

Now we can finally focus on studying Percolation. We will introduce
the first and most basic model of percolation: Percolation on Z2. In the
introduction, we already mentioned how this model arose, and we gave an
intuitive definition of it and asked the reader some questions regarding this
model. Since there are plenty of texts regarding Percolation on Z2 we will
be very straightforward in this chapter. So we will be interested in giving
a formal definition for the model, and even though the model has a great
number of interesting properties, we will focus particularly on the question
of criticality. This is the study of a natural parameter of the model, in this
case, the probability of having an open edge, and how this model drastically
changes depending on the chosen p.

As we have stated in the introduction, we are interested in the existence
of infinite connected components that contain the origin. We also noted that for
p = 1 we all edges and for p = 0 we have no edges, so in the first case we almost
surely have an infinite connected component and in the other case we almost
surely don’t have an infinite connected component. So, there exists a non
trivial critical point pc, such that for p > pc a.s exists an infinite connected
component containing the origin and for p < pc we have the opposite? Our
first theorems will give a positive answer to this question.

With that in mind we will prove that pc = 1/2. This will use three
main tools, which are Harris (FKG) Inequality, proved in the Appendix, the
Russo-Seymour-Welsh Theorem, which will give us pc ≥ 1/2, and finally the
Margulis-Russo formula, which will prove that pc ≤ 1/2. This chapter is largely
based in [9] and [17].

3.1
Definition of the model and other basic properties.

We begin with the graph Z2, which is defined by having its vertices
as the points of Z2 and edges between points with Euclidean distance 1.
We call the set of edges E, and for each p ∈ [0, 1] we define the following
random subgraph: Independently for each edge e ∈ E, we keep the edge with
probability p and take it away with probability 1 − p. This can also be seen
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as a random configuration ω ∈ Ω := {−1, 1}E, where for each edge e ∈ E, we
independently declare the edge to be open, w(e) = 1, with probability p or
closed, w(e) = −1, with probability 1− p. We remark that depending on the
visualization that we want to achieve, we may work with open edges being
black lines and closed edges being white (empty) or dashed lines, or we may
also work with open edges being red lines and closed edges being blue.

Figure 3.1: Percolation configuration on Z2 for p = 1/2. Image from [9].

We may define a similar model for the triangular lattice T. On this lattice
we consider site percolation, which means we are coloring the site as black
(red) with probability p and white (blue) with probability 1 − p. Those sites
are the points Z + eiπ/3Z which basically gives us honeycombs. We will only
work with Z2 on this chapter, but keep in mind that both this models share
many properties.

Figure 3.2: Percolation configuration on T for p = 1/2. Image from [9].

Remark 3.1 We state this a remark because it is not essential to be this
rigorous in our context, but for the ones interested in a measure theoretic
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perspective, we define the probability space (Ω,F ,Pp), with F being the σ-
algebra generated by the cylinder sets (events which depend solely on a finite
number of edges) and let Pp = ∏

e∈E µp(e), where µp(1) = p and µp(−1) = 1−p.

We let C(x) denote the connected component containing x in our random
subgraph. This represents all the vertices connected to x via a path of open
edges. We define C := C(0) and θ(p) := Pp(|C| = ∞). This represents the
probability of having an infinite connected component which contains the
origin. Note that as we commented in the Introduction, the existence of a
self-avoiding path from 0 to ∞ is equivalent to |C| =∞.

We will now prove that for p small but non-zero θ(p) = 0 and for p big,
but not 1, θ(p) > 0. This will be the first step towards the understatement of
the non trivial critical point which will later turn out to be 1/2.

Theorem 3.2 If p < 1/3, then θ(p) = 0

Proof. Consider Fn as the event that there is a self-avoiding path of length n
starting at 0 using only open edges. Note that

Pp(Fn) ≤ 4.3n−1pn,

since we have at most 4(3n−1) paths, each with probability pn. But note that
for p < 1/3, P(Fn) → 0, as n → ∞. Since we have that {|C| = ∞} ⊆ Fn, for
every n, then θp = {|C| =∞} = 0. �

Theorem 3.3 If p > 2/3, then θ(p) > 0.

Before we prove this theorem, we will present a very useful idea that we
will be frequently using throughout this thesis.

We introduce the dual graph (Z2)∗ by taking the translation Z2 +
(

1
2 ,

1
2

)
.

Note that there is a 1− 1 correspondence between edges that cross each other
at their centers. With this correspondence in mind, we consider an open edge in
Z2 to have its correspondent edge as closed in (Z2)+. So the dual is embedded
with a probability measure P1−p.

From this, a key Lemma will allow us to prove the above theorem. Since
it is a very geometrical result, we will not give the proof of it but solely state
it and refer to Whitney.

Lemma 3.4 |C| < ∞ if and only if there exists a simple cycle in (Z2)∗

surrounding 0 consisting of all open edges.

Proof. Pick up p > 2/3. Let Tk be the line segment joining the origin to the
point (k, 0). Let C2` be a dual open cycle surrounding Tk, of length 2l. Note
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Figure 3.3: This image represents a subgraph of Z2 and its corresponding dual.
Note the correspondence between edges that are crossing in the middle. This
image was taken from [10].

that C2` must contain a dual open edge e+ crossing the positive x−axis between
k + 1/2 and (2l − 3)/2. This means that the number of choices for e∗ is less
than l. For the rest of C2` we have a self-avoiding path of length 2l− 1, so we
got at most 4.32`−2 choices for it. If we define Yk to be the number of open
dual cycles surrounding Tk we will get that:

Ep(Yk) ≤
∑

`≥k+2
`.4.32l−2(1− p)2` ≤

∑
`≥k+2

4`
9 (3(1− p))2`.

Since 3(1−p) < 1, the final sum is convergent and we get that Ep(Yk)→ 0
as k → ∞. So there exists k such that Ep(Yk) < 1. If we define Ak to be the
event that Yk = 0 we get that Pp(Ak) > 0. Define Bk to be the event that all
the edges of Tk are open. Since Ak and Bk are both independent together with
the previous Lemma we get that

θ(p) ≥ Pp(Ak ∩Bk) > 0.

So we get the desired result. �

Now we may finally define the critical point pc in a natural way by:

pc := sup{p : θ(p) = 0} = inf{p : θ(p) > 0}

From what was done we already have that pc ∈ [1/3, 2/3]. Now we will present
important tools that will help us prove that pc = 1/2. We also note that the
reader can have an intuitive idea why this is a natural critical value to think
of. A good hint is to prove that the probability of a left to right open cross
in a rectangle [n + 1, n] should have probability 1/2 by symmetry. A good
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hint is to look at the dual and note that in this case the (Z2)∗ has the same
distribution as Z2, so open to bottom open crossings in (Z2)∗ must have the
same probabilities as left to right open crossings in Z2. This will be more
formalized in the proof of pc ≥ 1/2.

3.2
Russo-Seymour-Welsh

In this section we will state and prove the celebrated result know as
the RSW Theorem. First, we will state a more general Lemma valid for all
p ∈ [0, 1]. It will be the key step to prove the RSW Theorem which is state for
p = 1/2. With this Theorem we will easily conclude in the last Section that
pc ≥ 1/2. We follow [4] and [17].

First, LR will stand for left-right and TB for top-bottom. Let Hm,n be the
event that there is a LR open crossing of [0,m]× [0, n], and Vm,n the same but
for a TB crossing. If m = n we shorten our notation to Hn and Vn respectively.

Lemma 3.5 Let R = [0,m] × [0, 2n], with m ≥ n be an m by 2n rectangle.
Let Xm,2n be the event that there two are open paths γ1 and γ2, such that γ1

is a TB cross of the square S = [0, n] × [0, n], and γ2 lies within R and joins
some vertex on γ1 to some vertex on the right-hand side of R. Then,

Pp(Xm,2n) ≥ Pp(Hm,2n)Pp(Vn)/2.

Proof. Suppose that Vn holds. So, there is a path γ0 of open edges crossing
S from top to bottom. We define γ. the left-most open vertical crossing of S
as the open path which is the most to the left. One may note that for every
possible TB path γ1, everything to the right of γ1 is independent of the event
{γ = γ1}, since we only need to examine edges to the left of γ1 to know if it is
the left-most path.

Claim: For any possible TB crossing γ1, we have that Pp(Xm,2n|γ =
γ1) ≥ Pp(Hm,2n)/2.

To prove this, take Γ1 as the (note necessarily open) path formed by the
union of γ1, with its horizontal reflection γ′1, and one additional edge connecting
both of them.

As seen in the image above, this path TB crosses R. We also have with
probability Pp(Hm,2n) the existence of a path γ3 of open edges LR crossing R .
Note that this path must meet with Γ1 in at least one vertex. We also have by
symmetry that the probability that some such path meets at a vertex of γ1 is
Pp(Hm,2n)/2. So, the event Y (γ1), which is defined as the existence of an open
path γ2 in R to the right of Γ1, joining a vertex of γ1 to the right-hand side of
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Figure 3.4: Here we represent the rectangle R and the square S along with the
curves γ2 and Γ1. Observe that the presence of the red and black thick curves
implies the event Xm,2n.

R, has probability at least Pp(Hm,2n). Since this only depends on the edges to
the right of γ1 in S, we have by independence that

Pp(Y (γ1)|γ = γ1) = Pp(Y (γ1)) ≥ Pp(Hm,2n)/2.

But the events of Y (γ1) and {γ = γ1} implies Xm,2n as highlighted in the
drawing. So

Pp(Xm,2n|γ = γ1) ≥ Pp(Hm,2n)/2.

Since Vn is the disjoint unions (over all possible curves) of events of the form
γ = γ1, we have that Pp(Xm,2n|Vn) ≥ Pp(Hm,2n)/2. Now we use the conditional
probability formula and the fact that Pp(Xm,2n ∩ Vn) = Pp(Xm,2n) to conclude
that Pp(Xm,2n) ≥ Pp(Hm,2n)Pp(Vn)/2, as desired. �

Now, we will go back to formalize the intuition that we gave in the end
of the last section.

Lemma 3.6 P1/2(Hn+1,n) = 1/2.

Proof. As we have hinted, we will use the dual lattice to prove it by a symmetry
argument. Denote by B the event that there is an open TB crossing of
[1/2, n+1/2]×[−1/2, n+1/2] in the dual lattice. We have that by a consequence
of Whitney’s theorem that Hn+1,n occurs if and only if B fails (look at Figure
3.1 again). So, P1/2(Hn+1,n) + P1/2(B) = 1 and by the symmetry that occurs
when p = 1/2, we may concluded that P1/2(Hn+1,n). Note that this easily gives
us that P1/2(Hn) ≥ 1/2. �

Now as a consequence of both these previous lemmas we may prove the
following:

Lemma 3.7 For all n ≥ 1 we have that P1/2(H3n,2n) ≥ 2−7.
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Proof. Consider the following subdivision of a 3n by 2n rectangle R0 :

Figure 3.5: Here we divide the original rectangle into three identical n by 2n
rectangles. We call R to be the 2n by 2n square formed by the first and second
rectangles, and R′ to be the 2n by 2n square formed by the second and third
rectangles. The middle rectangle is subdivided into two identical n by n squares
and the lowest one is labeled S.

We consider X ′2n to be defined analogously as X2n but reflected horizon-
tally . By Lemma 3.5 we get that

P1/2(X ′2n) = Pp(X2n) ≥ P1/2(H2n)P1/2(Vn)/2.

Note that if the events X2n(R), X ′2n(R′) and Hn(S) hold, we have a 3n by 2n
crossing of the rectangle R0. We changed a little bit the notation to highlight
where the crossings are happening. They are also are increasing events, and
hence by Harris’s Lemma (Theorem A.10):

P1/2(H3n,2n) ≥ P1/2(X2n ∩X ′2n ∩Hn)

≥ P1/2(X2n)P1/2(X ′2n)P1/2(Hn)

≥ P1/2(Hn)2P1/2(Vn)2P1/2(Hn)/4

So, we have as a consequence of Lemma 3.6 that

P1/2(H3n,2n) ≥ 2−7.

�

Now we may finally state the RSW Theorem.

Theorem 3.8 For every k ≥ 1, there exists ck > 0 such that for all n ≥ 1

P1/2(kn, n) ≥ ck
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The most incredible part is that we have actually made the hardest part with
the previous Lemmas. Now it is just a consequence of Harris’s Inequality. We
sketch the proof for the case k = 2 and invite the reader to generalize.

Note that as a consequence of Harris’s Lemma (See the image below) we
have that P1/2(H4n,2n) ≥ P1/2(H3n,2n)2P1/2(Vn) ≥ 2−7.2−7.2−1 = 2−15, for all
n ≥ 1. Small cases such as the rectangle 2 by 1 are trivially done just taking
everyone to be open.

With that we conclude this first part. With this powerful tool it will
actually be very easy to prove that pc ≥ 1/2. We invite the reader to try to
prove this.

Figure 3.6: We can achieve a crossing in the 4n by 2n rectangle, with two
horizontal crossings in 3n by 2n rectangles and a vertical crossing in the 2n by
2n square.

3.3
Margulis-Russo Formula

In this Section we will prove an extremely important result called the
Margulis-Russo Formula. This will help us to prove that pc ≤ 1/2. But
before we do this we will formally introduce the concept of influence. We
have already hinted it in Section 2 and we will give more examples regarding
it in Section 5 since this is an extremely important concept for this thesis.
First we define the idea of pivotal.

Definição 3.9 Given a Boolean function from Ωn into {−1, 1} or {0, 1}.
Take a variable i ∈ {1, ..., n} = [n]. We say that i is pivotal for f for ω if
f(ω) 6= f(ωi), where ωi denotes ω but flipped in the ith coordinate. The event
{f(ω) 6= f(ωi)} is measurable with respect to {xj}j 6=i.

Definição 3.10 The pivotal set P for f , as the random set of [n]

P(ω) = Pf (ω) := {i ∈ [n] : i is pivotal for f for ω}.
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Definição 3.11 (Influence) The influence of the ith bit, Ii(f), is defined
by:

Ipi (f) := Pp(i is pivotal for f) = Pp(f(ω) 6= f(ωi)) = Pp(i ∈ P).

We define the total influence I(f) := ∑n
i=1 Ii(f).We also denote by II(f) :=∑n

i=1 Ii(f)2.

For an event A ∈ Ωn we denote by Ii(A) := Ii(1A).
We may finally state the Margulis-Russo Formula which connects the

derivative of Pp(A) with the influences.

Theorem 3.12 (Margulis-Russo Formula) Let A ∈ Ωn be an increasing
event. Then,

d

dp
=

n∑
i=1

Ipi (A).

Proof. Allow each variable ωi to have its own parameter pi and let Pp1,...,pn be
the corresponding probability measure. It suffices to prove that for 1 ≤ i ≤ n

∂

∂pi
Pp1,...,pn(A) = Ip1,...,pn

i (A).

Without loss of generality take i = n. Given a point x = (x1, ..., xk) ∈ Ωk, for
k ≤ n, we denote by

px =
∏

i:xi=1
pi

∏
i:xi=−1

(1− pi).

Note that when k = n we have that Pp({x}) = px. For x ∈ Ωn−1, denote by
x+ = (x1, ..., xn−1, 1) and x− = (x1, ..., xn−1,−1), having x+, x− ∈ Ωn. We have
that px+ + px− = px.

For an increasing set A ∈ Ωn, we define

Aa = {x ∈ Ωn−1|x+ ∈ A, x− ∈ A},

and
Ab = {x ∈ Ωn−1|x+ ∈ A, x− /∈ A}.

Since A is increasing we have that

Pp1,...,pn(A) =
∑
x∈Aa

(px+ + px−) +
∑
x∈Ab

px+

=
∑
x∈Aa

px + pn
∑
x∈Ab

px.
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So, we may conclude that

∂

∂pi
Pp1,...,pn(A) =

∑
x∈Ab

px.

And note that the x ∈ Ab if and only if the nth coordinate is pivotal. So we
may conclude the statement

d

dp
Pp(A) =

n∑
i=1

Ipi (A).

�

With that we conclude this Section.

3.4
The critical point pc = 1/2

Now that we have proved our mains tools, we can finally achieve the
desired objective to prove that pc = 1/2. We shall begin proving that pc ≥ 1/2.
Theorem 3.13 pc ≥ 1/2
Proof. To prove that, we will show that θ(1/2) = 0, which is, that the
probability of having an infinite connected component containing the origin
is 0 when p = 1/2. We define a very important concept that will be useful in
a number of applications.
Definição 3.14 (Annulus) Let O(l) be the event that there exists an open
circuit containing 0 in what we define to be the annulus:

A(l) := [−3l, 3l]2 \ [−l, l]2.

Note that, since the event O(l) happens if we have 4 horizontal crossings in
the rectangles 6l by 2l (see the image in the next page), we have by the FKG
inequality and Theorem 3.8 that there exists c > 0 such that P1/2(Ol) ≥ c for
every l ≥ 1.

Let Ck be the event that there is a circuit in A(4k) + 1/2 in the dual
lattice around the origin consisting of open edges. Since those annulus are
disjoint (Try to make a drawing!) we have that the events Ck are independent.
From what was state before we also have that P1/2(Ck) ≥ c for all k. If we
denote by Ek the event that there exists a path connecting the origin to a
point outside the area delimited by the last dual annulus A∗(k), we have that

P1/2(Ek) ≤ P1/2

(
k⋂
j=1

Cc
k

)
=

k∏
j=1

P1/2(Cc
k) ≤ (1− c)k,
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Figure 3.7: Note that the existence of 4 horizontal crossings (hard direction)
implies the event O(l). It is then, easy to deduce our claim with the FKG
inequality.

for every k ≥ 1. But we also have that

θ(1/2) = P1/2(|C| =∞) ≤ P1/2

( ∞⋂
j=1

Ej

)
= 0,

and so we have concluded our proof. �

Now, as previously said, we will prove that pc ≤ 1/2, and hence, combine
with the previous statement to get pc = 1/2. But this will be a little less
straightforward, so we will state and prove a few more helpful lemmas before
we do that.

Proposition 3.15 (Finite size criterion) For any p, if there exists an n

such that
Pp(H2n,n−2) ≥ 0.98,

then θ(p) = Pp(|C| =∞) > 0.

Proof. To prove this, we will first state and prove the following lemma:

Lemma 3.16 For any ε ≤ .02, if Pp(H2n,n−2) ≥ 1 − ε, then Pp(H4n,2n−2) ≥
1− ε/2.

Proof. Let An be the event that there exists a LR open crossing of [0, 2n]×[1, n−
1], Bn the same for [n, 3n]×[1, n−1], and Cn be the same for [2n, 4n]×[1, n−1].
Also, let Dn be the event that there exists a TB open crossing of [n, 2n]× [0, n],
and En be the same for [2n, 3n]× [0, n].

Note that Pp(Dn) = Pp(En) ≥ Pp(Bn) = Pp(Cn) = Pp(An) ≥ 1−ε. So, by
the FKG Inequality we have that Pp(An∩Bn∩Cn∩Dn∩En) ≥ (1−ε)5 ≥ 1−5ε.
We may see that the intersection of this five events implies the event H4n,n−2.

Denoting by H ′4n,n−2 the event that there exists a LR open crossing of
[0, 4n] × [n + 1, 2n − 1], we have that H4n,n−2 and H ′4n,n−2 are independent
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and so

Pp(H4n,n−2 ∪H ′4n,n−2) = 1− (1− Pp(H ′4n,n−2))2 ≥ 1− 25ε2 ≥ 1− ε/2,

since ε ≤ 0.02. SinceH4n,n−2∪H ′4n,n−2 impliesH ′4n,2n−2, we conclude the lemma.
�

Going back to the proof of the proposition, we pick up N such that
Pp(H2N,N−2).We have by the previous lemma and a simple inductive argument
that for all k ≥ 0:

Pp(H2k+1N,2kN−2) ≥ 1− .02
2k ,

and so ∑
k≥0

Pp
(
(H2k+1N,2kN)c

)
<∞.

We will define a sequence Hk of crossings of the form H2k+1N,2kN−2 done in a
smart configuration. Let H0 be a LR open crossing of [0, 2N ]× [1, N − 1], H1

a TB open crossing of [1, N − 1] × [0, 4N ], and so on. See the image below
for more details. So, we have by the first Borel-Cantelli Lemma that all but
finitely many H ′ks occur. With that, we may conclude that θp > 0 as desired.

Figure 3.8: Here we denote H0, H1, H2, H3, and H4. It easy to see that if we
consider ∪n≥kHn it will form an infinite connected component. From there just
make a path from the origin to Hk, which has positive probability for fixed k.
This image was taken from [9].

�

Now we will state the following proposition, from which we will easily
derive that pc = 1/2.
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Theorem 3.17 Let Pn denote the pivotal set with respect to 1H4n,n . If pc =
1/2 + δ0, with δ0 > 0, then

lim
n→∞

inf
p∈[1/2,1/2+δ0]

Ep[|Pn|] =∞.

Proof. Since H4n,n−4/2 is an increasing event, the RSW Theorem (and by A.9),
implies that

inf
p∈[1/2,1/2+δ0],n

Pp(H4n,n−4/2) := ε1 > 0.

Now, define Un to be the event that there is a TB open dual crossing of
[2n + 1/2, 4n − 1/2] × [−1/2, n + 1/2. We have that there exists ε2 > 0 such
that

inf
p∈[1/2,1/2+δ0],n

Pp(Un) := ε2 > 0.

This is a consequence of the fact that this probability is minimized when
p = 1/2+δ0/2. So, since 1/2+δ0/2 < pc, the previous proposition implies that
P1/2+δ0/2(H2n,n−2) ≤ .98. Since this event and Un are complementary events
the claim follows.

Now, if Un occurs, define σ to be the right-most open TB crossing. Since
σ is the right-most crossing, we don’t know what happens to the left of σ. So,
conditioned on σ, by independence, the probability of an open from the left
hand side of [0, 4n] × [0, n/2] to one step to the left of σ, has probability at
least ε1. Observe that if this happens, the edge one step away from this path is
pivotal for H4n,n. If we change its state from, currently closed, to open, there
will be a LR open crossing in [0, 4n]×[0, n]. Define γ to be the lowest such path
if one exists. Again, we know nothing above γ, so conditioned on both γ and
σ, we know nothing about the area delimited at the top-left of these curves.
Consider q to be the intersection point of σ and γ. We also consider for each n,
the annulus A(4k)+1/2+q, which is the previous annulus centered on q instead
of 0, for k such that 4k ≤ n/2. Again, since O(l) are increasing, by RSW (and
A.9), we have that there exists ε3 > 0, independent of n, p ∈ [1/2, 1/2 + δ0/2],
and k such that, with probability at least ε3, there is an open path from γ to 1
step to the left of σ running within the annulus in the top-left area. Note that
each different k gives us a different pivotal edge for H4n,n. Since the number
of k’s satisfying 4k ≤ n/2 goes to infinity with n, then

lim
n→∞

inf
p∈[1/2,1/2+δ0]

Ep[|Pn|] =∞.
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�

With that we may finally conclude our main objective!

Theorem 3.18 pc ≤ 1/2.

Proof. Suppose that pc = 1/2 + δ0 for a δ0 > 0. Note that Ep[|Pn|] = Ip(H4n,n).
So, by the Margulis-Russo formula we actually have that

lim
n→∞

inf
p∈[1/2,1/2+δ0]

d

dp
Pp(H4n,n) =∞.

Since δ0 > 0, we would have that Pp(H4n,n) = ∞, for a p ∈ [1/2, 1/2 + δ0] by
the Mean Value Theorem. This is clearly a contradiction, since probabilities
are bounded by 1. So we conclude that pc ≤ 1/2. �

With that, we have proved that pc = 1/2 for Percolation on Z2 and with
that, we conclude this Section.
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4
Voronoi Percolation on R2

In this Chapter, we will be largely based on the article “Crossing
probabilities for Voronoi percolation” by Vincent Tassion [18]. The first Section
will be just a simple definition of the model for the readers that are not familiar
with Voronoi Percolation. We will also name it annealed Voronoi Percolation,
in contrast with the Quenched one.

In the second Section we will prove a RSW version for Voronoi Perco-
lation. That is, if we take an [kn, n] rectangle of R2, and the probability of
having an open tile is 1/2, then,

c < P(Hkn,n) < 1− c

, where c > 0 only depends on n.
This is an extremely important result that will be essential for our

applications in Chapters 6 and 7. We also mention that the proof generalizes
beyond the Voronoi case, requiring only the property of Quasi-Independence.
However, since it won’t be relevant for our application, we refer the original
paper for more details.

It was also noted by Professor Augusto Teixeira that Laurin Koehler-
Schindler and Vincent Tassion achieved a prove that does not require the quasi-
independence property, only using the FKG inequalities that, for instance,
we have in this context. This was not yet published but it can be seen in a
seminar uploaded at Youtube named “Russo-Seymour-Welsh theory for FKG
percolation” .

This was already conjectured by Tassion, since he already achieved in
his paper, without using quasi-independence, the result due to Bollobas and
Riordan, in the paper “The critical probability for random Voronoi percolation
in the plane is 1/2” [3] that essentially states that we have a RSW type theorem
for an infinite number of rectangles with a fixed aspect ratio. Note that this is
indeed weaker than the RSW type result that will be done in this Chapter. We
also note that if we have such result we may prove that pc ≥ 1/2 for Voronoi
Percolation. One may note that the structure of the lattice doesn’t interfere the
proof done in Chapter A. Originally, the proof of pc ≥ 1/2 was done with this
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weaker version of the RSW Theorem that can be also found in [4]. But since
we already have a stronger result, we won’t be interested in such property.

4.1
Definition of the model

We begin with the definition of a Poisson Point Process in R2.

Definição 4.1 For λ > 0, let Po(λ) be a Poisson Point Process in R2

with intensity λ. That is, the random countably infinite set of points in the
plane η, such that for every bounded Borel set A, the probability that η ∩ A
contains exactly k points is

PPo(λ)(|η ∩ A| = k) = (vol(A).λ)k
k! e−vol(A)λ,

and the random variables |η ∩ A1|, ..., |η ∩ An| are independent whenever
A1, ..., .An are disjoint Borel sets.

Definição 4.2 Let Po(λ) be as above. For every u ∈ η, we define the Voronoi
cell of u to be

V (u) := {x ∈ R2 : ‖u− x‖2 ≤ ‖v − x‖2 for every v ∈ η}

Definição 4.3 Given a parameter p ∈ [0, 1], we define the Voronoi Perco-
lation Process, such that for a Poisson Point Process Po(λ), we declare each
point z ∈ η, and its corresponding cell, to be open (black/red) with probability p
and closed (white/blue) with probability 1− p. We may also equivalently define
ηb and ηw as two independent Poisson process with intensity λ.p and λ(1− p),
and then η = ηb ∪ ηw. Points in the boundary of two tiles with different colors
are both black and white.

One may note, that again, the probability of a LR open crossing is equal to the
probability of a TB closed crossing. Since, apart from a zero measure event,
this events are disjoint, we have by duality that

P(Hn) = 1/2,

where a Hn, again, refers to a LR crossing in the n by n square.
The reader may note that there is a spatial dependency in this model

so we can’t use the same strategy as in Z2. For example, points outside the
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rectangle may affect the tiling inside of it, so the “lowest path” argument won’t
work as before. But, we have a Quasi-Independence property. That is, we define
the annulus As,t to be

At,s := [−t, t]2 \ [−s, s]2,

Os,t to be the event that there is a open circuit around this annulus, and we
consider the event

Fs = {for every z ∈ A4s,2s, there exists some point x ∈ η at distance d(z, x) < s},

then:

Lemma 4.4 We have that lims→∞ P[Fs = 1] and, for any A4s,2s−measurable
event E, the event E∩Fs is measurable with respect to the restriction of ηb, ηw
to A5s,s.

Proof. We consider a covering of A4s,2s given by C Euclidean balls of diameter
s. Note that this C does not depend on s. So the event that each of these balls
contains at least one point of η, implies Fs, and so

P[Fs] ≥ 1− Ce−πs2/4.

Observe that for the second part of the Lemma, if Fs, no point outside A5s,ss

will interfere in the tiling inside A4s,ss. So, the result follows. �

This simple property will be extremely useful, and if the reader notes,
it translates the idea that the Voronoi Percolation model has a sort of weak
independence, that is, points far from the structures that we are studying won’t
affect their tilings. With that, we may end this Section.

4.2
Russo-Seymour-Welsh for Voronoi Percolation in the plane

In this Section we will prove the RSW Theorem for annealed
Voronoi Percolation. That is:

Theorem 4.5 (RSW for annealed Voronoi Percolation) For every k ∈
R+, there exists ck ∈ (0, 1) such that for all s ≥ 1

P(Hks,s) ≥ ck.

Note that by duality we also have

P(Hks,s) ≤ 1− c1/k.
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While the first result is non trivial for k > 1, the latter one is non trivial for
k < 1.

Following the same idea of [18], we will state a series of lemmas that
will prove that infs≥1 P(O2s,s) > 0. The following easy corollary of the FKG
inequality for annealed Voronoi Percolation with the previous statement will
give us the main result. We have proved similar inequalities in Chapter 3, and
we recommend the reader to prove this on your own.
Corollary 4.6 As a consequence of the FKG inequality we have that

1. P(H2s,s) ≥ P(O2s,s).

2. P(H(1+iκ)s,s) ≥ P(H(1+κ)s,s)iP(Hs)i−1, for any κ > 0 and i ≥ 1.

3. P(O2s,s) ≥ P(H4s,s)4.

But to get the desired statement we will introduce for each scale s a real value
αs so we can study the pair

(
P(O2s,s, αs

))
altogether. First we will prove the

RSW result for certain good scales that obey αs ≤ 2.α2s/3. Then, we will
show that those scales are close, in the sense that there exists a global C such
that 4si ≤ si+1 ≤ Csi, where si satisfies that αsi ≤ 2α2si/3. With both this
properties we will be able to prove Theorem 4.5.

With that in mind let us introduce the definition of αs, which we will
call a good scale. But first, we define the following events:

Fix s ≥ 1. Consider that for −s/2 ≤ α ≤ β ≤ s/2, the event Hs(α, β) is
defined by the existence of an open crossing in the square Bs/2 := [−s/2, s/2]2,
from the left side to {s/2} × [α, β].

For 0 ≤ α ≤ s/2, we define χs(α) to be the event such that:

1. There exists an open path γ−1 in Bs/2 from {−s/2} × [−s/2,−α] to
{−s/2} × [α, s/2].

2. There exists an open path γ1 in Bs/2 from {s/2} × [−s/2,−α] to
{s/2} × [α, s/2].

3. There exists an open path γ∗in Bs/2 from γ−1 to γ1.

We also define φs : [0, s/2]→ [−1, 1], a sort of auxiliary function, to be

φs(α) = P(Hs(0, α))− P(Hs(α, s/2)),

for 0 ≤ α ≤ s/2. It is not hard to verify that φs is continuous, strictly
increasing, and φs(0) ≤ 0, by the Voronoi tessellation and Hs properties. We
also have by symmetry, that since Hs,s = 1/2, this implies that φs(s/2) = 1/4.
Now we may finally define αs with the following lemma:
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Lemma 4.7 For every s ≥ 1, there exists αs ∈ [0, s/4] such that the following
properties hold:

(P1) For all 0 ≤ α ≤ αs, we have that P(χs(α)) ≥ c1 > 0

(P2) If αs < s/4, then for all αs ≤ α ≤ s/2, P(Hs(0, α)) ≥ 1/8 +
P(Hs(α, s/2)).

Proof. Since φs is continuous, strictly increasing and we have that φs ≤ 0 and
φs(s/2) = 1/4, we may define:

αs := min(φ−1(1/8), s/4).

Note that with this definition (P2) is clearly satisfied. Now we only need to
verify (P1). If α ≤ αs, and since P(0, s/2) = 1/4 :

1 ≤ 4P(Hs(0, s/2))

≤ 4P(Hs(0, α)) + 4P(Hs(α, s/2))

≤ 4φs(α) + 8P(Hs(α, s/2))

≤ 1/2 + 8P(Hs(α, s/2)).

So, for every α ≤ αs

P(Hs(α, s/2)) ≥ 1/16.

We have that 4 events of the type Hs(α, s/2) with a TB open crossing of
Bs/2 implies the event χs(α) (see the image below for more details). So, by the
FKG inequality for annealed Voronoi Percolation ( i.e. doesn’t depend on a
fixed distribution of points. This difference will be made more clear when we

− s
2

s
2

α

β

Figure 4.1: We represent the event
Hs(α, β).

− s
2

s
2

−α

α γ−1 γ1

γ∗

Figure 4.2: We represent the
event χs(α).
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introduce the notion of Quenched Voronoi Percolation):

P(χs(α)) ≥ 1
2

(
1
16

)4

=: c1.

With that we conclude the proof.
�

We represent below an image that will facilitate the visualization and a
more detailed explanation of what is in fact happening above. Since it didn’t
fit in this page, we leave a blank space and present it in the next page.
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− s
2

s
2

−α

α α

−α

s
2

− s
2

Figure 4.3: The thick lines represent the events Hs(α, s/2) (red) and
Hs(−s/2,−α) (magenta). The dashed lines represent reflected version
H∗s(α, s/2) (orange) and H∗s(−s/2,−α). The black curve represents the TB
open crossing. Note that we can always form an event of the type χs(α). Just
pick the dashed lines, if they inintersectiontersect to the left of the black,
curve pick this and everything to the left of the intersection point as γ−1. If
not, pick the curve formed by the black curve and the intersection points with
the dashed lines and look for the left of it as the image above. For the thick
lines, if they intersect to the right of the black curve pick this and everything
to the right of the intersection point as γ1. This is the case of the image above.
If not, to the same thing as before but substituting left for right. Finally, the
black curve will be γ∗ itself or we will be able to find a path from the intersec-
tion point to the black curve, in the image the red path. We also remark, that
exceptionally, in this Chapter, we represent open path with multiple colors to
aid the visualization. We only avoid the color blue to avoid confusion.

Lemma 4.8 There exists c2 > 0 such that for all s ≥ 2, the inequality
αs ≤ 2α2s/3 implies

P(O2s,s) ≥ c2.

Proof. First, consider the case αs = s/4. In this case we won’t even need
the hypothesis αs ≤ 2α2s/3. By (P1) we have that P(χs(s/4)) ≥ c1. With
that in mind, let’s create an open TB crossing in the rectangle [0, s]× [0, 2s].
Just consider for i = 0, ..., 3 the event εi that there exists an open path from
{0}× [(i−1)s/2, is/2] to {0}× [(i+1)s/2, (i+2)s/2] in the strip [0, s]×R. We
have that P(εi) ≥ P(χs(s/4)), (note that if we translate by s/4 in the vertical
direction γ−1 implies an event of the type εi)and the in the intersection of
all this events implies Vs,2s. So, by rotational invariance, P(H2s,s) ≥ c4

1. And
hence, by Corollary 4.6

P(O2s,s) ≥ (c12
1 (1/2)2)5.
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− s
2

0

s
2

s

3s
2

2s

5s
2

Figure 4.4: Here we represent the events ε0, ε1, ε2, and ε3. Note that since they
all intersect, we may form a TB open crossing in the rectangle [0, s]× [0, 2s].

Now, consider s to be such that αs ≤ 2α2s/3 and αs < s/4. We will
use the event χ2s/3(α2s/3) to connect two crossings and wield a horizontal
crossing in a rectangle of aspect ratio 4/3. To do so, consider the two squares
R := (−s/6,−α2s/3) + Bs/2 and R′ := (s/6,−α2s/3) + Bs/2. Since α2s/3 ≤ s/6
(by definition) we have that Bs/3 ⊂ R and Bs/3 ⊂ R′. Let ε be the event
defined by the existence of an open path from left to {s/3} × [−α2s/3, α2s/3]
in R. Analogously, define ε′ as the event that there exists an open path
from {−s/3} × [−α2s/3, α2s/3] to right in R′. Since αs ≤ 2α2s/3 ≤ s/2 and
αs < s/4, (P2) gives us that P(Hs(0, 2α2s/3)) ≥ 1/8. So, P(ε) ≥ 1/8 and
P(ε′) ≥ 1/8.Also, recall that P(χ2s/4(α2s/3)) ≥ c1 by (P1).

See the image in the next page, and observe that if the events χ2s/3, ε

and ε′ occur, there must exist a LR open path in R ∪ R′. Since R ∪ R′ has
aspect ratio 4/3, the FKG inequalities implies that

H4s/3,s ≥ P(χ2s/3(α2s/3) ∩ ε ∩ ε′) ≥ c1(1/8)2.

Corollary 4.6 ends our proof.
�

Now we will aim to prove the second part, which is, showing the existence
of a global constant C ≥ 4 such that 4si ≤ si+1 ≤ Csi, where the sequence
{si} satisfies that P(O2si,si). But, before we do it, we will need to prove two
preliminary lemmas.
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0

s
3

− s
3

α2s
3

−α2s
3

α2s
3

−α2s
3

− s
2 − α2s

3

s
2 − α2s

3

−2s
3

− s
3

s
3

2s
3

R R′

Figure 4.5: The intersection of the events χ2s/3(α2s/3), ε and ε′ implies the
existence of a LR crossing in R ∪R′.

Lemma 4.9 There exists c3 > 0 such that for all s ≥ 1 and t ≥ 4s

If P(O2s,s) ≥ c2 and αt < s, then P (O2t,t) ≥ c3.

Proof. Let s ≥ 1 and t ≥ 4s. Assume that P(O2s,s) ≥ c2 and αt < s. Consider
the event E that there exists

1. An open path from left to {0} × [0, s] in the square [−t, 0]× [−t/2, t/2].

2. An open from {0} × [0, s] to right in the square [0, t]× [−t/2, t/2].

3. An open circuit in the annulus A2s,s.

− t
2

t
2

−t

0

t

−2s
−s

s

2s

Figure 4.6: The event E.

Since αt < s ≤ t/4, property (P2) implies that for αt ≤ α ≤ t/2

P(Ht(0, α)) ≥ c0/4.
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In particular, we may take α = s. So, by the FKG inequality

P(H2t,t) ≥
(c0

4
)2
c2.

With that, we have by Corollary 4.6 that

P(O2t,t) ≥ c3,

for some c3 > 0. �

For the next lemma we will need to use Lemma 4.4. So, pick up s0 such
that for all s ≥ s0

P(Fs) ≥ 1− c3/2.

Lemma 4.10 Define the constant C1 ≥ 25, sufficiently big such that

(
1− c3

2

)blog5(C1)c−1

<
c0

4 .

Let s ≥ s0 such that P(O2s,s) ≥ c2. Then, there exists s′ ∈ [4s, C1s] such that
αs′ ≥ s.

Proof. Let s ≥ s0 such that P(O2s,s) ≥ c2. Suppose by contradiction that
αt < s, for all 4s ≥ t ≥ C1s. For t = C1s, we have that αC1s < C1s/4 and
αC1s < s < C1s/2. So by (P2) we have that

P(HC1s(0, s))− P(HC1s(s, C1s/2)) ≥ c0/4.

Let 1 ≤ i ≤ blog5(C1)c−1. Since P(O2s,s) ≥ c2 and α5is < s, Lemma 4.9 applied
to t = 5is gives us P(O2.5is,5is). Together with the independence property of
Lemma 4.4

P(O2.5is,s ∩ F5is/2) ≥ c3/2.

Let ε be the event that there exists an open circuit around AC1s/2,s. This
happens when A2.5is,5is ∩ F5is/2 occurs for any 1 ≤ i ≤ blog5(C1)c − 1. By
Lemma 4.4 this events are independent and we get:

P(εc) ≤ P
( ⋂

1≤i≤blog5(C1)c−1
(O2.5is,5is ∩ F5is/2)c

)
=

∏
1≤i≤blog5(C1)c−1

P
(
(O2.5is,5is ∩ F5is/2)c

)

≤
(

1− c3

2

)blog5(C1)c−1

<
c0

4 .
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Now, consider the event Ω that in the square [−C1s, 0]× [−C1s/2, C1s/2] :

1. There is no open path from the left side to {0} × [s, C1s/2].

2. There exists an open path from the left side to {0} × [0, s].

Observe that this implies that there can’t be an open circuit around AC1s/2,s.

−C1s
2

C1s
2

−C1s −C1s
2

0

C1s
2

C1s

−s

s

Figure 4.7: The event Ω. The event ε represented by the dashed lines can’t
happen, otherwise, Ω won’t wield.

So, we obtain that

P(HC1s(0, s))− P(HC1s(s, C1s/2)) ≤ P(Ω) ≤ P(εc) < c0/4,

which contradicts the assumption. So, we wield the result.
�

Lemma 4.11 There exists a constant C3 ≥ 25 and an infinite sequence
s1, s2, ... of scals such that for all i ≥ 1,

1. 4si ≤ si+1 ≤ C3si.

2. P(O2si,si) ≥ c2.

Proof. Since αs ≤ s, there must exist s1 ≥ s0 such that αs1 ≤ 2α2s1/3. So,
by Lemma 4.8, we have that P(O2s1,s1) ≥ c2. So, by Lemma 4.11 there exists
s′1 ∈ [4s, C1s] such that

αs′1 ≥ s1 ≥ s′1/C1.

So, there must exist s2 ∈ [s′1, 3
2C

log4/3(3/2)
1 s′1] such that αs2 ≤ 2α2s2/3 or the

bound αs ≤ s would be contradicted. Let C3 := 3
2C

log4/3(3/2)
1 . We have that

s2 ∈ [4s1, C3s1] and by Lemma 4.8,P(O2s2,s2) ≥ c2.

Note that the constant C3 is independent, and so, we can iterate the
construction above, and find by induction s3, s4, ... �
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So, we have at each scale si that P(H2i,si) ≥ c2. We may pick 5C3

rectangles of the form [si.j, (2 + j)si] × [0, si], with 0 ≤ j ≤ 5C3, and 5C3

squares of the form [si.j, si(j + 1)] × [0, si], consider a LR open crossing in
the rectangles and a TB open crossing in all the squares. With that we have
that P(H2s,s) ≥ c > 0 for all s ∈ [si, C3si]. We may do this for all si since
4si ≤ si+1 ≤ C3si. So, we get that P(H2s,s) ≥ c > 0 for all s ≥ 1. By Corollary
4.6, we may end this Chapter with the proof that for every k > 0, there exists
ck such that for all s ≥ 1 :

ck ≤ P(Hks,s) ≤ 1− ck.
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5
Noise Sensitivity of Boolean Functions

In this Chapter, we present the definition of Noise Sensitivity. It was first
developed by Benjamini, Kalai and Schramm in the paper [2]. This concept is
not restricted to the Percolation setting, but its most important application
in the original paper was showing that for p = 1/2, crossings on Z2 are
asymptotically Noise Sensitive events. This means that if for a growing
sequence of rectangles, we know all edges, but a small random set, we can ’t
predict if there will have a LR crossing or not.

In the first Section we will review the notion of influence, applying it to
more simple examples that were previously define in Chapter 2. We also use
Fourier Analysis on the Hypercube, presented in Chapter 2. This will turn out
to be an essential tool for the study of Influence and Noise Sensitivity.

In the second Section we will formally state the definition of asymptoti-
cally noise sensitive functions. We will also give a condition on the Fourier
spectrum and prove that it is equivalent to noise sensitivity.

In the third Section we will prove show that noise sensitivity is linked to
Influences. We prove (with a slightly strengthened hypothesis) the Benjamini-
Kalai-Schramm Noise Sensitivity Theorem, which we now state.

Theorem 5.1 [2] If

lim
n→∞

n∑
k=1

Ik(fn)2 = 0,

then {fn} is asymptotically noise sensitive.

This is an extremely non-trivial result that was used by the authors to prove
that crossings on Z2 are noise sensitive at pc = 1/2. We will not reproduce
their proof on the noise sensitivity of crossing events. Instead, we shall see
how their ideas may be combined with an analysis of randomized algorithms,
as was done in [15]. The approach of [15] gives an upper bound for the sum
of squares of influences in terms of the revealment δA(f) of a randomized
algorithm A applied to a function f . Both these concepts, and the proof of
their result will be carefully done in the fourth Section.

Finally, we apply it in the last Section for crossings. We will do it
explicitly for the hexagonal lattice T but it will be pointed out that our proof
is actually more general.
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This Chapter will be practically self-contained, the only significant result
that we use from Percolation is the Russo-Seymour-Welsh Theorem. It is also
largely based on the results of Schramm and Steif [15] and the book of Garban
and Steif [9].

5.1
Influence

We begin by quickly reminding the definition of influence.

Definição 5.2 Let ω ∈ Ωn, and f : Ωn → {−1, 1} or {0, 1}. The influence of
the ith bit, Ii(f), is

Ii(f) := P(f(ω) 6= f(ωi)) = P(i ∈ P),

where P denotes the pivotal set for f .

We will now compute the influence of some of the functions we introduced
along this thesis.

Example 5.3 (Dictator) The Dictator function, given by Dictn(x1, ..., xn) =
x1 must have have influence only on the 1th bit, if we expect a natural defini-
tion. Note that by our definition:

I1(Dict) = P(Dict(ω) 6= Dict(ω1)) = 1,

because if we flip the value of the first bit, the value of the function will change.
For i 6= 1

Ii(Dict) = P(Dict(ω) 6= Dict(ωi)) = 0,

since the function depends only on the first value. Note that the total influence
I(f) = 1. Thus, we achieve something expected.

Example 5.4 (Example) For the parity function, given by Parn(x1, ..., xn) =∏n
i=1 xi, we expected all the influences to have equal and maximal value. Note

that by our definition, for any 1 ≤ i ≤ n

Ii(Par)P(Par(ω) 6= Par(ωi)) = 1,

since if we flip the value of the ith bit, we change the outcome of the function.
Note that in this case, the total influence I(f) = n. This extreme case has
another interesting property. Even if we know all but one voters, we still won’t
know the outcome of this functions. This points us towards the next definition
we will introduce, which is noise sensitive functions, i.e., functions that gives
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us few information, and are highly likely to change, if we make small random
disturbances on it.

Example 5.5 (Majority) Majority function is defined for odd n as
Majn(x1, ..., xn) = sign(∑n

i=1 xi). We expected that all the voters would
have the same influence, and it would be somehow balanced, opposed to the
previous extreme cases. Note that, by our definition

I1(Maj) := P(Maj(ω) 6= Maj(ω1)).

Note that for the first bit to change the outcome of the function, the sum of
x2 + ...+ xn must equal 0. This happens when we have n−1

2 1′s, and n−1
2 −1′s.

Thus, the probability of such event must be given by

I1(Maj) =

(
n−1
n−1

2

)
2n−1 = Θ( 1√

n
),

by Stirling’s Approximation (A.7), where Θ(m) denotes the same order as m.
By symmetry, we may easily see that Ii(Maj) = Θ(1/

√
n), for every 1 ≤ i ≤ n.

So, the total influence I(f) = n/
√
n.

Example 5.6 (Crossings on Z2 or T) Let fn be defined as the indicator
function for the existence of a LR open crossing in a grid (hexagonal lattice)
of n edges (sites). Edges that sufficiently far from the boundary will be pivotal
when the so-called 4−arm event happens. This is more natural in T since the
dual T∗ = T. But, such events may be seeing in a similar for Z2 as we have
done in Theorem 3.17. It is still extremely hard to predict the decay of such
event. It was proved by Smirnov and Werner in [16] that for the hexagonal
lattice, if R > 1 is the radius of the circle centered in site 0, then

P[A4
R] := α4(R) = R−

5
4 +o(1),

where A4
R denotes the event that there are four arms of alternating color from

the site 0 to distance R away. This is an extremely technical result and we
won’t prove it, since it is out of the scope of this dissertation. We may also
similarly define the 1−arm event, A1

R, as the event that the site 0 is connected
to distance R by some open path, and A2

R be the event that there are two arms
of different colors from site 0 to distance R away.

We end this section by relating the notion of influence to that of the
energy spectrum defined in the Fourier section.
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Figure 5.1: A realization of the four-arm event on the hexagonal lattice T.
This picture was taken from [9].

Proposition 5.7 If f : Ωn → {0, 1}, then for all k,

Ik(f) = 4
∑
S:k∈S

f̂(S)2,

and
I(f) = 4

∑
S

|S|f̂(S)2.

Proof. For f : Ωn → R we introduce a function, corresponding to a discrete
derivative along the kth bit, that will be quite useful for a number of
application. Let for all k ∈ [n], ∇k(f) : Ωn → R be defined as

∇kf(ω) = f(ω)− f(σk(ω)),

where σk maps Ωn to itself by flipping the kth bit. Note that:

∇kf(ω) =
∑

S⊆{1,...,n}
f̂(S)[χS(ω)− χS(σk(ω))] =

∑
S⊆{1,...,n},k∈S

2f̂(S)χS(ω).

With that, we get that for any S ⊆ [n],

∇̂kf(S) =

2f̂(S), if k ∈ S

0, otherwise.

If f maps into {0, 1}, ∇kf maps into {−1, 0, 1}, and we have that
Ik(f) = ‖∇kf‖1 , and ‖∇kf‖1 = ‖∇kf‖2

2. So, applying Parseval’s formula and
using the previous characterization of ∇̂kf(S) we wield the first statement of
the proposition. The second one derives easily from it.

�
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We remark that if f : Ωn → {−1, 1}, we get that Ik(f) = ∑
k:k∈S f̂(S)2

and I(f) = ∑
S |S|f̂(S)2. It is easy to see that from the last part of the proof.

Proposition 5.8 If f : Ωn → {0, 1} is monotone, then for all k

Ik = 2f̂({k}).

Proof. Note that

f̂({k}) := E[fχ{k}] = E[fχ{k}1k/∈P ] + E[fχ{k}1k∈P ].

Note that the first term is always zero, while the second one is equal to Ik(f)/2
due to monotonicity. So the result follows. �

We remark that if f maps into {−1, 1} we may get by following the same
proof that Ik(f) = f̂({k}). We also remark that the condition of monoticity is
essential since for the Parity function Ik(f) = 1 and f̂({k}) = 0.

5.2
Noise Sensitivity

In this section we will define the long-awaited notion of noise sensitiv-
ity. We will also introduce a few other notions and connect them with the
energy spectrum as we did in the previous section.

Definição 5.9 Let ω be uniformly chosen from Ωn and let ωε be ω but with
each bit independently re-randomized with probability ε. This means that for
each bit, independently, we will choose it with probability ε and flip a coin with
probability 1/2 of giving 1, and 1/2 of giving −1. Note that ωε has the same
distribution as ω. Now let mn be an increasing sequence of integers and let
fn : Ωmn → {−1, 1} or {0, 1}. Then, f is noise sensitive if for every ε > 0

lim
n→∞

E[fn(ω)fn(ωε)]− E[fn(ω)]2 = 0.

Since fn takes the value, the definition says that the random variables
fn(ω) and fn(ωε) are asymptotically independent for ε fixed and n large. When
we connect this notion with the one of energy spectrum we will see that it is
sufficient that such condition holds for one ε ∈ (0, 1).

We also state the notion of noise stability that captures an opposite
situation
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Definição 5.10 The sequence {fn} is noise stable if

lim
ε→0

sup
n

P(fn(ω) 6= fn(ωε)) = 0

Even though they are opposed notions, a sequence of functions can
be both noise sensitive and noise stable, but this happens if and only if
V ar(fn) → 0. A sequence of functions can also be neither noise sensitive nor
noise stable as the example below (check this!):

Gn(x1, ..., xn) =

x1, if x1 = 1

Parn−1(x2, ..., xn), if x1 = −1

It is an easy exercise to check that Dictator is noise stable and Parity
is noise sensitivity. Majority is also noise stable, and there is an important
theorem that can be found in [13] that says in some sense that, among all
low-influence Boolean functions, Majority is the stablest.

We also remark that this notions can be easily extended for p ∈ [0, 1].
Just pick ε with a p probability coin. With that it is not easy to see that for
p 6= 1/2 crossings on Z2 (or T) are both noise sensitive and noise stable. In
fact, since for p > 1/2 PHkn,n → 1 and for p < 1/2 PHkn,n → 0, we have in both
cases that V ar(fn) → 0. The same thing won ’t happen in the case p = 1/2
thanks to the RSW theorem. This, will be in a fact a much more complicated
case that will need extremely non trivial theorems such as the BKS Noise
Sensitivity Theorem and SS Revealment Theorem. We will dedicate the next
sections to prove them. Before we end this section we present the connection
between noise sensitivity and the energy spectrum.

Proposition 5.11 A sequence of Boolean functions fn : {−1, 1}mn → {−1, 1}
or {0, 1} is noise sensitive if and only for any k ≥ 1

k∑
m=1

∑
|S|=m

f̂n(S)2 =
k∑

m=1
Efn(m)→ 0, as n→∞.

Moreover, to be noise sensitive does no depend on the value of ε ∈ (0, 1) chosen.

Proof. First note that for any f : Ωn → R we have that

E[f(ω)f(ωε)] =
∑
S

f̂(S)2(1− ε)|S|,
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so we may obtain that

Cov(f(ω), f(ωε)) =
n∑

m=1
Ef (m)(1− ε)m.

Note that if fn is noise noise sensitive for a single ε ∈ (0, 1), then:

Cov(fn(ω), fn(ωε)) =
mn∑
m=1

Efn(m)(1− ε)m → 0, as n→∞.

But, for any fixed k ≥ 1

k∑
m=1

Efn(m). 1
2k ≤

mn∑
m=1

Efn(m)(1− ε)m,

for all mn ≥ k. So, we must have that ∑k
m=1Efn(m)→ 0 as n→∞.

In the other direction, we must note that for fn : Ωmn → {−1, 1} or
{0, 1}, ∑n

m=1Efn(m) ≤ 1. Fix ε ∈ (0, 1). For any δ > 0, pick up k(δ) such that∑∞
m=k(1− ε)m < δ. So, pick up N such that for all n ≥ N , ∑n

m=1Efn(m) < δ.
Then, we have that for all n ≥ N

Cov(fn(ω), fn(ωε)) ≤
∞∑
m=1

Efn(m)(1− ε)m

<
k∑

m=1
Efn(m) + δ

< 2δ.

Since δ and ε are arbitrary, we have just proved that for all ε ∈ (0, 1),
Cov(fn(ω), fn(ωε))→ 0. So, we conclude the proposition.

�

We present, without proof, a similar result to noise stability. From now
on, we will only work with the notion of noise sensitivity.

Proposition 5.12 A sequence of Boolean functions fn : {−1, 1}mn → {−1, 1}
or {0, 1} is noise stable if and only for any ε > 0, there exists k such that for
all n,

∞∑
m=k

∑
|S|=m

f̂n(S)2 =
∞∑
m=k

Efn(m) < ε.

And with that, we end this section.
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5.3
The Benjamini-Kalai-Schramm Noise Sensitivity Theorem

We now come to the main theorem regarding noise sensitivity.

Theorem 5.13 (BKS99) If

lim
n→∞

mn∑
k=1

Ik(fn)2 = 0,

then {fn} is noise sensitive.

We begin this by remarking that the converse is clearly not true. As it was
noticed, Parity is noise sensitive but ∑n

k=1 Ik(fn)2 = n. But, if fn is a sequence
of monotone functions the converse turns out to be true. This is in fact easy to
prove and may be derived by Propositions 5.8 and 5.11. Just observe that
if fn : Ωmn → {−1, 1} is a sequence of monotone functions, we have by
Proposition 5.8 that

mn∑
k=1

Ik(fn)2 =
mn∑
k=1

f̂({k})2.

If we suppose that {fn} is noise sensitive, we have by Proposition 5.11 that
Efn → 0 as n tends to infinity. So, we may conclude that

lim
n→∞

mn∑
k=1

Ik(fn)2 = 0,

as required.
But, before we prove the BKS Theorem we will make two important

remarks. The first one is that a very important tool is the Hypercontractivity
Theorem. We won’t prove it since it is a more technical result and it can be
found in [9]. We first define the noise operator Tρ.

Definição 5.14 For any ρ ∈ [0, 1], let Tρ be the following noise operator
on the set of functions on the hypercube: For any f : Ωn → R, we define
Tρf : ω → E[f(ω1−ρ)|ω]. It is not very hard to deduce from the definition
T̂ρf(S) = E[Tρfχs] that

Tρ : f =
∑
S

f̂(S)χS →
∑
S

ρ|S|f̂(S)χS.

Theorem 5.15 (Hypercontractivity) For any f : Ωn → R and any ρ ∈
[0, 1]

‖Tρf‖2 ≤ ‖f‖1+ρ2 ,
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where ‖f‖1+ρ2 :=
(∑

ω
|f(ω)|1+ρ2

2n
)1/1+ρ2

.

The second remark is that we will assume a stronger condition but we will
use the theorem in its most general form. The general proof is an extremely
technical result that depends on estimates obtained by Talagrand. We refer
the original paper [2] for more details. The stronger condition that we assume
is namely that if

H(fn) :=
mn∑
k=1

I2
k ,

we require that H(fn) ≤ (mn)−δ for some exponent δ > 0. So, we are
conditioning the decay to be polynomial. We actually can prove a more
quantitative result:

Proposition 5.16 For any δ > 0, there exists a constant M(δ) > 0 such that
if fn : Ωmn → {0, 1} is any sequence of functions satisfying

H(fn) ≤ (mn)−δ,

then ∑
1≤|S|≤M log(mn)

f̂n(S)2 → 0.

Note that with Proposition 5.11 this result implies the BKS Theorem
when H(fn) decays as assume. We also observe that the same result may be
achieved with f : Ωn → {−1, 1}, but we state at this way because our main
application will be for the indicator of crossings.
Proof. LetM > 0 and ρ ∈ (0, 1) be constants whose values will be chosen later.
We have that:

∑
1≤|S|≤M log(mn)

f̂n(S)2 ≤ 4
∑

1≤|S|≤M log(mn
|S|f̂n(S)2

=
mn∑
k=1

∑
1≤|S|≤M log(mn)

∇̂kfn(S)2

≤
∑
k

( 1
ρ2 )M log(mn) ‖Tρ(∇kfn‖2

2

≤
∑
k

( 1
ρ2

)M log(mn)
‖∇kfn‖2

1+ρ2 ,

where the last inequality follows from the Hypercontractivity Theorem. Now,
since ∇kfn ∈ {−1, 0, 1}, we have that ‖∇kfn‖1+ρ2 = ‖∇kfn‖2/(1+ρ2)

2 . So,
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∑
1≤|S|≤Mlog(mn)

f̂n(S)2 ≤
∑
k

ρ−2M log(mn) ‖∇kfn‖4/(1+ρ2)
2

= ρ−2M log(mn)∑
k

Ik(fn)2/(1+ρ2)

≤ ρ−2M log(mn)(mn)ρ2/1+ρ2
H(fn)

1
1+ρ2 ,

where the second inequality follows by Holder (??). Now, pick ρ(δ > 0)
sufficiently small such that ρ2−δ

1+ρ2 ≤ − δ
4 . Also, pick up M(ρ) = M(δ) > 0

small such that 2M log(ρ−1) < δ/8. Then, we have that

∑
1≤|S|≤M log(mn)

f̂n(S)2 ≤ (mn)2M log(ρ−1)mδ/4
n ≤ m−δ/8n → 0,

and so we conclude the proof. �

We remark that a proof of “Crossings are noise sensitive” can be obtained
directly from this theorem. The original approach found in [2] obtained that
by showing crossings on Z2 are very uncorrelated with the majority function,
and showing that this implies that crossings are noise sensitive. A different
approach done in [9] used the same theorem, but directly bounded the
influences with critical exponents for the 4−arm events, also taking care with
the boundary which require the analysis of different types of events, such as
the 1−arm event. But instead of taking this approaches we will introduce the
idea of revealment and basically prove that H(f) ≤ δA(f). So proving that
δA(fn)→ 0, is enough to show that {fn} is noise sensitive.

5.4
The Steif-Schramm Revealment Theorem

Before we formally present the Revealment Theorem, we must first
introduce a few notions.

An algorithm for a Boolean function f is an algorithm A that queries
the values of the bits one by one, where the decision of which bit to ask can
be based on the values of the bits previously queried, and it stops when the
value of f is determined (it doesn’t depend on the remaining bits).

A randomized algorithm for a Boolean function f is the same as above
but we can use randomness to decide the next value to be queried.

Given a randomized algorithm A for a Boolean function f , let JA denote
the random set of bits queried by A.

Definição 5.17 (Revealment) The revealment of a randomized algo-
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rithm A for a Boolean function f , denoted by δA(f), is defined by

δA := max
i∈[n]

P(i ∈ JA).

The revealment of a Boolean function f, denoted by δf , is defined by

δf = inf
A
δA(f),

where the infimum is taken over all randomized algorithms A for f .

Note that this notions can be immediately extended to functions f : Ωn → R.
We may now present the main result of this section, proved in [15].

Theorem 5.18 (SS10) For any function f : Ωn → R and for each k ≥ 1, we
have that

Ef (k) =
∑
|S|=k

f̂(S)2 ≤ δfk ‖f‖2
2 .

Note that for fn = 1Hn+1,n , if we find a random algorithm An, such that
δAn(fn) → 0, we have that for each fixed k, Ef (k) → 0. So we may use
Proposition 5.11 to conclude that {fn} is noise sensitive. This is, indeed, an
extremely powerful result that will also be used for our applications regarding
Quenched Voronoi Percolation.

In the following proof, let Ω̃ denote the probability space that includes the
randomness in the input bits of f and the randomness used to run the algorithm
(which we assume to be independent) and we let E be the corresponding
expectation. Elements of Ω̃ may be represent without loss of generality as
ω̃ = (ω, τ) where ω are the random bits and τ represents the randomness
necessary to run the algorithm.
Proof. Fix k ≥ 1. Let

g(ω) :=
∑
|S|=k

f̂(S)χS(ω),

for all ω ∈ Ω. Note that ‖g‖2
2 := ∑

|S|=k f̂(S)2.
Now, let J ⊆ [n] be the random set of all bits examined by the algorithm.

Let A be the minimal σ−field for which J is measurable and every ωi, i ∈ J,
is measurable. This can be viewed as the relevant information gathered by the
algorithm. For any function h : Ω → R, let hJ : Ω → R denote the random
function obtained by substituting the values of the bits in J . More precisely, if
ω̃ = (ω, τ) and ω′ ∈ Ω, then hJ(ω̃)(ω′) is h(ω′′) where ω′′ where ω′′ is ω on J(ω̃)
and is ω′ on [n]\J(ω̃). So, hJ is a random variable on Ω̃ taking values in the set
of mappings from Ω to R. Note that this random variable is A−measurable.
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When the algorithm terminates, the unexamined bits in ω are free and hence,
we must have that E[h|A] =

∫
hJ = ĥJ(∅), where the integral is defined to be

the integration with respect to the uniform measure on Ω. It follows by the
definition of conditional expectation that E[h] = E[

∫
hJ ]. Analogously, for all

h,
‖h‖2

2 = E[h2] = E[
∫
h2
J ] = E[‖hJ‖2

2].

Since the algorithm determines f , f is A-measurable, and so, by Theorem 2.2
properties, we have that:

‖g‖2
2 = E[gf ] = E[E[gf |A]] = E[fE[g|A]].

Since E[g|A], Holder’s Inequality gives us that

‖g‖2
2 ≤

√
E[ĝJ(∅)2] ‖f‖2 .

Applying Parseval’s formula to the random function gJ gives us that for any
ω̃ ∈ Ω̃,

ĝJ(∅)2 = ‖gJ‖2
2 −

∑
|S|>0

ĝJ(S)2.

Taking the expectation over ω̃ ∈ Ω̃ gives us that

E[ĝ2
J ] = E[‖gJ‖2

2]−
∑
|S|>0

E[ĝJ(S)2]

=
∑
|S|=k

ĝ(S)2 −
∑
|S|>0

E[ĝJ(S)2]

≤
∑
|S|=k

E[ĝ(S)2 − ĝJ(S)2].

Now, since gJ is built randomly from g by fixing the variables in J = J(ω̃),
and since g by definition does not have Fourier coefficients larger than k, for
any S with |S| = k we have that

E[gJχS] = ĝJ(S) =

ĝ(S) = f̂(S), if S ∩ J(ω̃) = ∅

0, otherwise.

So, we obtain that

E[ĝJ(∅)2] ≤
∑
|S|=k

ĝ(S)2P(S ∩ J 6= ∅)

≤ ‖g‖2
2 kδA.

DBD
PUC-Rio - Certificação Digital Nº 1912783/CA



Chapter 5. Noise Sensitivity of Boolean Functions 60

So, we have that
‖g‖2

2 ≤ ‖g‖2 ‖f‖2

√
kδA,

and by squaring both sides we finally conclude that

∑
|S|=k

f̂(S)2 ≤ ‖f‖2
2 kδA.

Since A was arbitrary, the same is true for δf , and thus, we conclude the proof.
�

5.5
Crossings are Noise Sensitive

We will only do a sketch of the proof since the details are a require a little
bit of extra work. We will also work with the hexagonal lattice since T∗ = T

makes it easier to visualize the algorithm.

Theorem 5.19 Start by picking up Q = QR to be the indicator function for
the event that critical site percolation on the start hexagonal lattice contains
a left to right open crossing in some grid-approximating domain D to a large
square of side length R. Then, there exists α > 0 such that δA ≤ R−α.

Proof. The algorithm proceeds as follows. There are four distinguished bound-
ary arcs of D, which we call “left”, “right”, “up” and “down”. Pick uniformly
at random an edge e0 on the right had boundary of D, and let p0 be its mid-
point. Let ζ be the union of top and left boundary segments of D. Explore the
interface β, which has black hexagons to the right and white hexagons to the
left, from p0 to ζ, examining the bits associated to sites in hexagons touching
that interface, only as needed to continue the determination of the interface.
This interface is uniquely defined: If the hexagon is white, then β must take
a π/3 turn to the right, and if the hexagon is black, then β must take a π/3
turn to the left. See the image below

Now, let ζ ′ be the union of the bottom and left boundaries of D, and β′

that corresponds to the configuration ω′ obtained by flipping all the colors of
the hexagons in D̄.

Now, we need to calculate the revealment of this algorithm. Observe that
for the points near the boundary, for instance, up to distance

√
R. Note that

the probability of the random starting point p0 is within distance
√
R from

the examined hexagon is O(
√
R/R).

Observe that for hexagons at distance bigger than
√
R, there must exist

a path of open (black) hexagons from the hexagon H to the boundary of D of
size bigger than

√
R. But this is exactly the one arm event, that was actually
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already bounded for Z2 when we proved Theorem 3.13. We may do the same
annulus method to bound such event and we may obtain α > 0 such that
P(A1√

R
) ≤ R−α. With that we prove that

δA(QR) = O(R−1/2 +R−α),

and so we may conclude that δQR → 0. With the BKS and SS theorems, we
prove that {QR} is noise sensitive and we obtain the desired result. �

Note that this weaker (since it is not interested in the best exponents)
proof depends only on the RSW Theorem, and so generalizes easily to other
models. With a little bit of care, the proof works for similar models provided
we have an RSW result.

Doing this for Quenched Voronoi Percolation requires some more ideas
alongside the ideas that we have seen above. The next section of this disserta-
tion will be dedicated to how the authors (AGMT) achieved this result.

Figure 5.2: The interfaces β and β′.
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6
Quenched Voronoi Percolation

This Chapter is devoted to a careful study of the paper “Quenched
Voronoi Percolation” [1]. Though we can study quenched Voronoi Percolation
for the PPo model, the original conjecture was stated for what we will call the
Binomial model. This model actually creates some extra technicalities since it
does not have the same independence property as the Poisson model.

Definição 6.1 (Binomial Model) We will consider a set η of n points in
a rectangle R, each chosen independently and uniformly at random. For each
u ∈ η, we define the Voronoi cell of u to be

V (u) := {x ∈ R : ‖u− x‖2 ≤ ‖v − x‖2 for every v ∈ η} .

We then independently color each point z ∈ η, and its corresponding cell,
red or blue each with probability 1/2. This may be encoded as a function
ω : η → {blue, red}. We denote by PBin(n,R) the probability measure associated
with the selection of the pair (η, ω). In fact, sometimes it will be convenient
to abuse notation and also use PBin(n,R) for the probability measure associated
with selecting only η.

We focus on studying crossing probabilities in rectangles. Let HR denote
the event that there is a red horizontal crossing in the rectangle R.

A straightforward duality argument (as in the Poisson case) shows that
PBin(n,R)(HR) = 1/2 in the case that H is a square. This event depends on
the set of points η and its coloring ω. It is natural to ask which matters most:
η or ω. Benjamini, Kalai and Schramm [2] conjectured that the point set η
does not matter much at all. Let P(HR|η) be the conditional probability of the
crossing given the point set η. They conjectured that if η ∼ Bin(n,R) then
P(HR|η)→ 1/2 in probability as n→∞.

We may now state the main theorem of [1] which confirms the conjecture
in a strong sense.

Theorem 6.2 For all θ ∈ (0, 1), there exists N(θ) ≥ 1 and c > 0 such
that the following holds. Let R0 be an axis-parallel rectangle with aspect ratio
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ρ ∈ (θ, 1/θ). Then

PBin(n,R0)
(
|P(HR0 |η)− PBin(n,R0)(HR0)| ≥ n−c

)
≤ n−c,

for every n ≥ N .

Let us outline the four main steps of the proof. The first step, reproduced
in Section 6.2, is to achieve a weaker bound for crossing probabilities, in the
(quenched) Poisson model PPo and the model PPo|H of (quenched) Poisson
restricted to the half-plane; see below for a formal definition. Then, in Section
6.3 we translate this result to the (quenched) Binomial model PBin(n,R), and
apply it, together with the annulus method, to achieve a bound for the
probability of the one-arm event. In Section 6.4 we state an Efron-Stein type
inequality, which relates variance and Influence, and therefore reduces proving
Theorem 6.2 to controlling Influences. Finally, in Section 6.5, we shall see that
Influences (in fact, the sum of squares of influences in the quenched model)
may be controlled in terms of the revealment of a randomized algorithm. As in
Section 5 the revealment itself is controlled by our bounds on the probability
of the one-arm event.

What is actually beautiful, is that so many of the ideas we discussed
while introducing Noise Sensitivity and Percolation are brought together in
this proof. In particular, the annulus method (Chapter 3), the RSW theorem
(Chapter 4) and the the Revealment Theorem (Chapter 5) all make an
appearance in the proof of Theorem 6.2.

We will not reproduce the proofs of all the lemmas of [1]. In particular we
state the results on crossing probabilities in the half-plane and an Efron-Stein
type inequality without proof.

On the other hand, there is one result in particular which we shall prove
with much more detail than appears in [1]. This result, Proposition 3.11 of
[1] (which appears as Proposition 6.15 here), bounds the probability of the
one-arm event in the (quenched) Binomial model PBin(n,R). There is a moment
in the proof of Proposition 3.11 in [1] where a result proved for the Poisson
model is applied in the Binomial model. This is certainly a problem. However,
we shall see that it is not a major problem. We shall explain how, in certain
circumstances, results for one model imply results for the other. The relevant
results for translating between these models are Lemma 6.12 and Lemma 6.24.
See also Lemma 7.5, in Chapter 7.

We remark that we state and prove certain results for axis-parallel
rectangles. This is simply because it turns the drawings or visualization easier.
But everything can be done for rectangles in general.
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Before we begin the proof we must introduce variants of the Poisson
model to deal with boundary effects.

6.1
Two more Poisson models (to deal with boundary problems)

In this section we will present two more models that we will use
alongside the PPo model presented in Chapter 4. We do them in a separate
section to avoid confusion. These models are quite important to deal with
boundary problems that naturally arises when we are dealing with the Binomial
distribution. We will, frequently, throughout this thesis reproduce results for
both PPo and PPo|H (see the definition below) and sometimes, such as in Section
6.2 this can be a little bit tricky.

Definição 6.3 (Poisson Model on the Half plane) We may consider a
Poisson Percolation Process restricted to the half plane H := {x ∈ R2 : x ≥ 0}
just by restricting the Voronoi cells to the half plane. Let u ∈ η|H:

V (u) := {x ∈ H : ‖u− x‖2 ≤ ‖v − x‖2 for every v ∈ η|H},

where η is naturally distributed as a Poisson Point Process. The associated
probability measure to the Percolation Process is denoted by PPo(λ)|H. We reduce
it to PPo|H when λ = 1. In fact, this will be our only case of interest.

Definição 6.4 (Poisson Model on the Quarter plane) Just as we did
before, but instead, we restrict our process to the quarter plane Q := {(x1, x2) ∈
R2 : x1 ≥ 0, x2 ≥ 0}. We denote the Percolation Process associated with it by
PPo|Q.

Now that the models have been properly introduced, we remark in a,
yet, informal way, how they connect with the Binomial model. The problem
is that while for events E at the center of R, PBin(n,R)E behaves like PPo(E),
the same won’t be true for events near the boundary, since it will influence the
Voronoi Tesselation. At such cases, PPo|H(E) and PPo|Q(E) will be extremely
useful. More precisely, PPo|H(E) is useful for events close to only one border
and PPo|Q(E) for events in the corner of the rectangle.

We also remark that for a rectangle R ⊂ R2 we denote by Rn, the
rectangle with the same aspect ratio and center of R, but renormalized to
have area n. We also denote by τ.R, for τ > 0, the rectangle with the same
center as R, but with τ times each side length of it.
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6.2
Weak bounds for crossing probabilities on Quenched Voronoi Percolation

In this section we will prove a weaker version of Theorem 6.2 on the
“Poisson Model” and the “Poisson Model on the Half plane”.

In this section, we will denote ω : η → {−1, 1} to be a uniform
random two-coloring of η. Observe, that since, in this section, η is distributed
accordingly to a Poisson distribution (restricted to the half plane or not), ω is
countable. But we remark that since we are only interested in the restriction
of ω to ηR, the subset of points whose cells intersect a given rectangle R, which
is almost surely finite.

Theorem 6.5 For every axis-parallel rectangle R ⊂ R2 with aspect ratio
ρ > 0, there exists a constant φ(ρ) > 0, that only depends on the aspect ratio
of R, such that

PPo(P(HR|η) ≤ 1
2k ) ≤ (1− φ)k,

for all sufficiently large k ≥ N0(ρ).

We begin by defining the following random variable X = X(η, ω), whose
value depends on both η and ω, and which counts the maximum number of
vertex-disjoint (no two of the crossings use points in the interior of the same
Voronoi cell) vertical crossings of R:

X := max
m∈N
{There exist m vertex-disjoint, monochromatic vertical crossings

{γ1, ..., γm} of R}.

The following lemma will be a key tool in our proof of Theorem 6.5.

Lemma 6.6 (Color Switching Lemma) For almost every η,

P(HR|η) = E[2−X |η].

This follows almost immediately from a basic fact about “color-switching”. For
those unfamiliar with color-switching, we will give a brief introduction to it.
Proof. Consider the event that X = k. This means that there exist k, but not
k + 1, vertex-disjoint, monochromatic vertical crossings of R. The following
algorithm provides a method to find such paths. First, we discover the left-
most monochromatic path (in the colored Voronoi tiling of R given by the pair
(η, ω)) by starting from the left-most cell which intersects the lower side of the
rectangle and repeatedly exploring the left-most cell of this color, until either
the explored component reaches the top of the rectangle (and then we add
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this monochromatic path to our collection) or we have exhausted the entire
monochromatic component of the start point. In either case, we may start
again from the next available cell on the lower side of R (if it exists) and
discover the left-most monochromatic path entirely to the right of the already-
discovered cells. Repeating this process until we reach the right-side of R, we
obtain a collection (γ1, ..., γk) of disjoint monochromatic crossings.

An important feature of this algorithm is that it allows us to use “color-
switching” arguments. The fundamental observation, is that, for a given η,
and a given collection of paths (γ1, ..., γk) obtained via the algorithm, there is
a bijection between the set of colorings in which γj is red, and those in which
it is blue. Indeed, if we swap the color of all cells that are on or to the right of
γj, then the algorithm produces exactly the same set of paths. More generally,
if Π ∈ {−1, 1}k denotes the sequence of colors of the paths (γ1, ..., γk), we have
the following fact: For every σ ∈ {−1, 1}k, we have that

P(Π = σ|X = k, η) = 1
2k

almost surely. Observe now, that the event HR holds if and only if all
monochromatic paths are red. So, by what was done above

P(HR|η) =
∞∑
k=0

P(Π = (1, ..., 1)|X = k, η)P(X = k|η)

=
∞∑
k=0

P(X = k|η)
2k = E[2−X |η].

�

In order to obtain the proof of Theorem 6.5 we only need to show that
X cannot be too large. This will be a consequence of the FKG Inequality
for annealed Voronoi Percolation (A.12), BK Inequality for annealed Voronoi
Percolation (A.13) and the RSW Theorem for annealed Voronoi Percolation
(4.5). We will state them again, in the exact form that they will be used here.

Lemma 6.7 (FKG Inequality for annealed Voronoi Percolation) Let
A and B be red-increasing events. Then

PPo(A ∩B) ≥ PPo(A).PPo(B).

Lemma 6.8 Let A and B be red-increasing events. Then:

PPo(A ◦B) ≤ PPo(A).PPo(B),
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where A ◦ B denotes the event that A and B occurs disjointly. We define it
formally in the appendix, but for events involving crossing the definition is
straightforward: The crossings must be vertex-disjoint.

Theorem 6.9 (RSW for annealed Voronoi Percolation) There exists a
constant c0, depending only on the aspect ratio of R, such that

c0 ≤ PPo(HR) ≤ 1− c0.

Proof.[Proof of Theorem 6.5] Given the pair (η, ω), define X+, and X−

respectively, to be the maximal number of disjoint red (respectively blue) TB
crosses in R, so in particular X = X+ + X−. By the RSW Theorem and the
BK inequality, there exists a constant c0, depending only on the aspect ratio
of R, such that

PPo(X− ≥ k) ≤ (1− c0)k,

for all k ≥ 0, and analogously PPo(X+ ≥ k) ≤ (1 − c0)k. Since the events
{X+ ≥ i} and {X− < j} are both red-increasing, it follows by the FKG
inequality that

PPo(X ≥ k) ≤
∑
i+j≥k

PPo({X+ ≥ i} ∩ {X− ≥ j})

≤
∑
i+j≥k

(1− c0)i+j = (1− c0)k
c0

(k + 1) + (1− c0)k+1

c2
0

≤ (1− φ)k
2 ,

for some constant φ(c0) > 0 and all sufficiently big k ≥ N0(c0). Now, by the
Color-Switching Lemma we obtain that

P(HR|η) = E[2−X |η] ≥ 1
2k−1P(X < k|η),

almost surely. Thus, by Markov’s (A.5) and the previous inequalities:

PPo(P(HR|η) ≤ 1
2k ) ≤ PPo(P(X ≥ k|η) ≥ 1

2)

≤ 2EPo[P(X ≥ k|η)]

≤ (1− φ)k.

Since c0 only depends on ρ by the RSW Theorem, we get the desired
result.
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�

As it was explained, for one-arm events of points near the boundary, a
version of Theorem 6.5 for the Poisson Model restricted to half plane is also
needed:
Theorem 6.10 For every axis-parallel rectangle R ⊂ H, with aspect ratio
ρ > 0, there exists a constant φ∗(ρ) > 0, such that

PPo|H(P(HR|η) ≥ 1
2k ) ≤ (1− φ∗)k,

for all k ≥ N∗0 (ρ).

To prove this, we actually need a version of the RSW Theorem for annealed
Voronoi Percolation restricted to the half plane. Since this will be quite useful
later, we will also state it as a theorem
Theorem 6.11 For every rectangle R ⊂ H, there exists a constant c1 > 0,
depending only on the aspect ratio of R, such that

c1 < PPo|H(HR) < 1− c1.

If one has Theorem 6.11, the proof of Theorem 6.10 follows in the same
way by replacing the RSW Theorem for annealed Voronoi Percolation with
this version. Since this result requires a more complicated proof, we will refer
to the paper for more details on it.

6.3
A bound on the probability of the 1−arm event

In this section we will bound the probability of the one arm event for the
quenched PBin(n,R) model. We do so using the annulus method. For this reason
we require some weak lower bound on crossing probabilities in the quenched
model. We prove such bounds by comparison to the results proved for the
Poisson Models above.

In translating from the Poisson models, we select the model PPo for events
strictly in the interior, the model PPo|H for events overlapping one boundary,
and the model PPo|Q for events in corners.

Lemma 6.12 (Far from the boundary events) Let R′αn be an axis-
parallel rectangle (with area αn) strictly contained in the interior
of Rn (a rectangle of area n), where 0 < α ≤ 1

4 . Let E ∈ FR′αn. Then

PBin(n,Rn)(E) ≤ 3PPo(E).
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R′αn

Rn

Figure 6.1: The event E depends solely on the colors of the cells whose points
lies inside R′αn.

Proof. Let Rn and R′α.n be fixed. Now, note that since E ∈ FR′α.n :

PPo(E) =
∑
m≥0

PPo
(
E
∣∣∣|η ∩R′αn| = m

)
PPo

(
|η ∩R′αn| = m

)
=
∑
m≥0

PPo|Rn
(
E
∣∣∣|η ∩Rα′

n | = m
)
PPo|Rn

(
|η ∩R′αn| = m

)
.

We also have that:

PBin(n,Rn)(E) =
n∑

m=0
PBin(n,Rn)

(
E
∣∣∣|η ∩R′αn| = m

)
PBin(n,Rn)

(
|η ∩R′αn| = m

)
=

n∑
m=0

PPo|Rn
(
E
∣∣∣|η ∩R′αn| = m

)
PBin(n,Rn)

(
|η ∩R′αn| = m

)
.

(1)

Now, we want want to compare xm = PPo|Rn
(
|η ∩ R′αn| = m

)
with

σm = PBin(n,Rn)
(
|η ∩R′αn| = m

)
. So, we make the following claim:

Claim: We have that for every 0 ≤ m ≤ n:

σm
xm
≤ 3

.
Proof. First, remind that AR′α.n ≤

n
4 . The case m = 0 is clearly bounded, since

(1 − α) · eα < 1. So, by Stirling’s approximation, for every 1 ≤ m ≤ 3n/4 we
have that:

σm =
(
n

m

)
(α)m(1− α)n−m ≤ e

2π
nn+1/2(α)m(1− α)n−m
mm+1/2(n−m)n−m+1/2

On the other hand, we have that :

xm = (αn)me−αn
m! ≥ (αn)me−αn

mm+1/2e−m+1 .
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So, by combining both inequalities, we get that

σm
xm
≤ e2

2π
(1− α)n−me−m

e−αn

(
n

n−m

)n−m+1/2

Now, we may observe that the function on the right hand side has a
natural continuous extension. Note that for every m ≤ 3n/4, m = βn for some
β ∈ [0, 3/4]. So we may define h : [0, 3/4]→ R+ as:

h(β) := e2

2π
√

1− β

(
1− α− β

1− β

)(1−β)n
e(α−β)n

≤ e2

2π
√

1− β ≤ 3.

For m > 3n/4, it is easy to observe that we are multiplying the ratio by
1

1−α
(n−m)
n

< 1/3. So,
σb3n/4c
xb3n/4c

≥ σm
xm

�

So, by the Equation 1 together with the previous claim:

PBin(n,Rn)(E) ≤ 3
n∑

m=0
PPo|Rn

(
E
∣∣∣|η ∩R′αn| = m

)
PPo|Rn

(
|η ∩R′αn| = m

)
≤ 3PPo(E).

�

We will state two analogous results. The reader shall note that the proof
is carried in the exact same way. Since we don’t want to be repetitive, we will
just state them.

Lemma 6.13 (Close to one boundary events.) Let R′αn be an axis-
parallel rectangle,that has one of its sides “glued” to one of Rn sides,
where 0 < α ≤ 1

4 . Let E ∈ FR′αn. Then

PBin(n,Rn)(E) ≤ 3PPo|H(E).

The reader may note, that the exact same result will also hold for PPo(E).
So why we do it for the process restricted to the half-plane? In the practical
application, no event will exactly be measurable to FR′αn when it is glued to
the left side. What happens is that it will depend on the color of the points
slightly out of the boundary of the rectangle Rn. But, if we consider this
side of the rectangle to coincide with the boundary of the half-plane (just
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H

R′αnR∗

Rn

Figure 6.2: The event E depends solely on the colors of the cells whose points
lies inside R′αn. The rectangle R∗ is the union of R′αn with the dashed lines. As
pointed out, in the practical application, our event will be FR∗−measurable.
But, when we restrict to H it is, indeed, FR′αn−measurable. The line with the
arrow represents the division of the half-plane.

turn your heads!), the restriction of the process to the half-plane will be
FR′αn−measurable as it is shown in the image above.

Lemma 6.14 (Close to two boundary events.) Let R′αn be an axis-
parallel rectangle,that has two of its sides “glued” to two of R sides,
where 0 < α ≤ 1

4 . Let E ∈ FR′αn. Then

PBin(n,Rn)(E) ≤ 3PPo|Q(E).

A similar phenomena will happen, but now, with the quarter-plane. We
express it in the drawing below:

Q

R′αnR∗

Rn

Figure 6.3: The event E depends solely on the colors of the cells whose points
lies inside R′αn.As pointed out, in the practical application, our event will be
FR∗−measurable. But, when we restrict to Q it is, indeed, FR′αn−measurable.
The lines with arrows represents the division of the quarter-plane.

We can now turn ourselves back to bounding the 1−arm event. Given
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u ∈ R and d > 0, we write V (u, d) for the event (depending on η and ω) that
there is a red path from u to some point of R at l2−distance d from u.

In fact we shall focus on the distance βn1/4, where β = ρ−1/2. This is a
convenient choice for the required application (in the proof of Lemma 6.20),
but of course the result also holds for any distance d at least polynomial in n.

Proposition 6.15 For every γ > 0, there exists ε > 0 such that the following
holds. Let R0 be an axis-parallel rectangle with aspect ratio ρ > 0. Let
β := 1/√ρ. Let u ∈ R0

n. Then, there exists N2(ρ, γ) such that

PBin(n,R0
n)
(
P(V (u, βn1/4)|η) ≥ n−ε

)
≤ n−γ,

for all n ≥ N2.

Proof. Fix a point u ∈ R0
n. For each j ∈ N, let Aj denote the square annulus,

centered on u, with inner side-length 7j and outer side-length 3.7j. Let Oj

denote the event that there is a blue circuit around the annulus (that may
be partial, in the sense that it may both its endpoints on the boundary of R,
separating u from the exterior of Aj. We will divide this proof in three cases

Case 1: The distance from u to any side of R0
n is bigger than n1/7. In

this case we will be working with PPo. Let

J = {j ∈ N : n1/10 ≤ 7j+1 ≤ n1/9},

and consider the collection of annulus C = {Aj : j ∈ J}. Let φ > 0 be the
constant of Theorem 6.5 corresponding to the aspect ratio ρ = 3 (rectangles
3 : 1). Fix k ∈ N depending on φ and γ. For each j ∈ J , let D(1)

j denote the
event (depending on η ) that P(Oj|η) > 2−4k. Now, let D(2)

j denote the event
that for every z ∈ Aj, there exists some point x ∈ η (η chosen accordingly to
the Poisson distribution) at distance at most n 1

32 from z. Finally, define:

Dj := D
(1)
j ∩D

(2)
j ,

and note that the events Dj are independent with respect to the measure PPo.
This is due to the fact that each D

(2)
j depends on a restriction η′j of η to a

certain neighborhood of Aj. Since the distance between the annulus Aj and
Aj+1 is 4.7j, which is bigger than n1/10 and we picked our distance on D(2)

j to
be at most n1/32, we will have that η′j and η′j+1 are independent. So, by the
properties of the Poisson distribution, those events are disjoint. Next, observe
that

PPo(D(2)
j ) ≥ 1− e−n

1
32 .
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Next, observe that, by the FKG inequality and Theorem 6.5, we have that

PPo
(
P(Oj|η) ≤ 2−4k

)
≤ 4(1− φ)k,

for all k ≥ N0. So, PPo(Dc
j) ≤ 5(1− φ)k, for all n ≥ N2(φ, k). Since k depends

on γ and φ is a fixed constant, one may note that N2(γ). Now, let D∗ denote
the event that Dj holds for at least half of the elements j ∈ J , and observe
that

PPo(D∗) ≥ 1− 2|J |
(
5(1− φ)k

)|J |/2
≥ 1− n−2.γ,

since |J | ≥ log(n)/90, and k was chosen sufficiently large in terms of γ and φ.
We now, observe that D∗ ∈ FR′ for the rectangle R′ strictly contained in R0

n,
with area smaller than n/4, since as pointed out, D∗ depends on the points
contained in the union of the restrictions ⋃j∈J η′j defined above (observe that
the way we chose the distances and annulus size implies an existence of such
R′ that contains all those points) . So, by Lemma 6.12 we actually have that

PBin(n,R0
n)(D∗) ≥ 1− n−γ,

for all n ≥ N2(γ). Finally, for those η such that D∗ holds, we get that

PBin(n,R0
n)
(
V (u, n 1

4 |η)
)
≤ P

( ⋂
j∈J

Oc
j |η
)

=
∏
j∈J

P(Oc
j |η) ≤ (1− 2−4k)|J |/2 ≤ n−ε,

for some ε(γ) > 0 and n ≥ N2(γ).
Case 2: The distance from u to any side of R0

n is smaller than n1/7 from
one side and bigger than n1/5 from the rest. In this case we will be working
with PPo|H . Let

J = {j ∈ N : n1/7 ≤ 7j+1 ≤ n1/6},

and consider the collection of partial annulus (just one of the rectangles that
composes the annulus will be out of R) C = {Aj : j ∈ J}. In this case, the
proof will carry out in the exact same way as in Case 1, using Theorem 6.10
(that may give a different constant φ∗, which won’t be a problem) to reach
that PPo|H(D∗) ≥ 1 − n−2·γ for all n ≥ N2(γ). But, as previously remarked,
we will have to consider the half-plane glued to the closest side of u. So, when
we restrict the events Dj to H, we may define similarly the restrictions η′j
of η whose points define the events Dj and are disjoint. We can also define a
rectangle R′ glued to the side of the rectangle which coincides with the division
of H that satisfies that D∗|H ∈ FR′ and has area less than n/4. So, we will be
able to conclude that PBin(n,R0

n)(D∗) ≥ 1 − n−γ, for all n ≥ N2(γ) by Lemma
6.13.
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Case 3: The distance from u to a side of R0
n is smaller than n1/7 and

from the other (only possible) side is smaller than n1/5. In this case we will be
working with PPo|Q . Let

J = {j ∈ N : n1/5 ≤ 7j+1 ≤ βn1/4},

and consider the collection of partial annulus (two of the rectangles that
composes the annulus will be out of R) C = {Aj : j ∈ J}. This case is a
little more tricky. As the reader may have noticed, we didn’t prove a result a
result analogous to Theorems 6.5 and 6.10 for the quarter-plane. But, what
happens is that since each one of the two rectangles that compose the annulus,
are far from the boundary that the other is close. Note that:

PPo|Q(P(Oj|η) ≤ 2−4k) ≤ PPo|Q(P(B1|η)P(B2|η) ≤ 2−4k)

≤ PPo|Q(
2⋃
i=1

(P(Bi|η) ≤ 2−4k))

≤
2∑
i=1

PPo|Q(P(Bi|η) ≤ 2−4k),

where B1 and B2 represent the 3 : 1 rectangles that composes the annulus.
Since both of them are at least n1/10 far from the other boundary we may
easily conclude that

PPo|Q(P(Bi|η) ≤ 2−4k) ≤ 2PPo|H(P(Bi|η) ≤ 2−4k).

The rest of the proof will carry out in a similar way to Case 2. The only
remaining detail is that now we have log(β) + log(n)/20 annulus ( pick N2 big
enough, such that log(n)/100 ≥ | log(β)|). So N2 will depend both on γ and
β). We also note that this is only a problem when β < 1. This will be the
case when ρ, the aspect ratio of R0 is bigger than 1. The reader may check the
remaining details. �

6.4
Variance and Influence

While in the previous section the authors used a standard argument
(bounding 1−arm events via the annulus method), in this one, they used a
different strategy to bound the dependence of the crossing event on the set
point η, where η is taken accordingly to the binomial distribution, in terms of
the expected influence of the colors. Remember that in this cases η is a set
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of n points in R, where each point is chosen independently and uniformly at
random. Thus, it is natural to define f ηR : {−1, 1}η → {0, 1} for the Boolean
function that encodes whether or not there exists a horizontal red crossing of
R. Getting inspired by a the well-known inequality of Efron and Stein [5] they
obtained the following theorem:

Theorem 6.16 For every fixed rectangle R0 ⊂ R2,

Var
(
P(HR0|η)

)
≤

n∑
i=1

E[Im(f ηR0)2],

where the the Variance and the Expectation are taken accordingly to the
binomial distribution. Since we only use the binomial distribution until the
end of this section, we will omit it to save up notation. The following corollary
is an immediate consequence of the above result and Chebyshev’s Inequality
(A.6).

Corollary 6.17 Let a(n) = E[∑n
m=1 Im(f ηR0)2]. Then

P
(
|P(HR0|η)− P(HR0)| ≥ a(n)1/3

)
≤ a(n)1/3.

Even though this is an original and non-trivial result, we will not prove
it. In fact, we will prove a result in Chapter 7 that uses similar ideas to this
one. Since, we don’t want to be repetitive we will only present, we will only
present our version, since it is an original and still unpublished result.

6.5
Noise Sensitivity of crossings in Quenched Voronoi Percolation

In this final section we will use the Revealment Theorem to obtain
Theorem 6.2. We will also note that the proof that crossings are Noise Sensitive
come as a corollary of this theorem. We remind that we are still working only
with the binomial. So, let R0 be a fixed rectangle with bounded aspect ratio
ρ ∈ (θ, 1/θ). Since we aim to use the Revealment Theorem, we will define an
algorithm with small revealment. The algorithm is essentially the same as that
done in Chapter 5, so we shall describe it in a more intuitive way. We, again,
refer to [15] for more details, since we also did this in a slightly informal way
in Chapter 5.

Definição 6.18 (The Schramm-Steif randomized algorithm) Let A be
the algorithm that, given η, queries bits of ω as follows:
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– Choose a point x in the middle third of the left-hand side of R0 uniformly
at random.

– Explored the boundary between red and blue cells, with red on the left,
starting from x. Here we place boundary conditions as follows: the left-
hand side of R0 is red above x, and blue below, and the bottom of R0 is
also blue. If this path:

– Reaches the right-hand side of R0, then f ηR0(ω) = 1.
– Reaches the bottom of R0, and ends at the top, then f ηR0(ω) = 0.
– Ends at the top of R0 without reaching the bottom, then go to step

3.

– Explore the boundary between red and blue cells, with red on the right,
starting from x. Here we reverse the boundary conditions, i.e., the left-
hand side of R0 is blue above x, and red below, and the top of R0 is also
blue. If this path:

– Reaches the right-hand side of R0, then f ηR0(ω) = 1.
– Otherwise f ηR0(ω) = 0.

Note that we only query those vertices whose cell we meet along one of
our paths. Note that we can bound the revealment with the following lemma:

Lemma 6.19 Let A be the Schramm-Steif randomized algorithm. Then

δA(f ηR0) ≤ max
u∈η

P
(
V (u, n−1/4)|η

)
+O(n−1/4)

almost surely.

Proof. Let u ∈ η, and consider the probability that u is queried by A. First,
note that the probability that the random start-point x is within distance n−1/4

of u is O(n−1/4). But if the distance between u and x is greater than n−1/4,
and u is queried by A, then we have a red path to distance at least n−1/4. So
V (u, n−1/4) holds. �

Now, we will use Proposition 6.15 to bound the probability of V (u, n−1/4).

Lemma 6.20 For every γ, there exists c(γ) such that

P
(

max
u∈η

P(V (u, n−1/4)|η) ≥ n−c
)
≤ 1
nγ
,

for every n ≥ N3(γ, θ).
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Proof. Let R0 be a fixed rectangle of aspect ratio ρ. Renormalizing R0 to
have area n would multiply its distances by

√
n
ρ
. So, for every γ > 0, we

have by Proposition 6.15 and the union bound that there exists c(γ + 1) and
N3(γ + 1, 1/√ρ), such that

P
(

max
u∈η

P(V (u, n−1/4)|η) ≥ n−c
)
≤

n∑
i=1

P
(
P(V (ui, βn1/4)|η) ≥ n−c

)
≤ n

nγ+1 = n−γ,

for every n ≥ N3(γ + 1, 1/√ρ). Since ρ ∈ (θ, 1/θ), and N will be bigger
with smaller 1/√ρ (bigger θ), we actually have a dependence on a N3(γ, θ). �

Now, we will combine this with the following easy consequence of the
Revealment Theorem for monotone functions (recall Proposition 5.8):

Theorem 6.21 Given a monotone function f : {−1, 1} → {0, 1} and a
randomized algorithm A that determines f , we have that

n∑
m=1

Im(f)2 ≤ δA(f)

From that and our previous bound we may conclude that

Lemma 6.22 Let R0 be a rectangle with bounded aspect ratio ρ ∈ (θ, 1/θ).
For every γ > 0, there exists c(γ) such that

P
(

n∑
m=1

Im(f ηR0)2 ≥ n−c
)
≤ 1
nγ
,

for all n ≥ N(γ, θ).

Note that with this Lemma and the BKS theorem we deduce that
crossings in Quenched Voronoi Percolation are Noise Sensitive in the sense
that

E[f ηR0(ω)f ηR0(ωε)|η]− E[ηR0|η]2 → 0,

as n → ∞ with probability for every ε ∈ (0, 1). This is a natural definition
since now E is also random.

We can now finally deduce Theorem 6.2.
Proof.[Proof of Theorem 6.2] Let R0 be a rectangle with bounded aspect ratio
ρ ∈ (θ, 1/θ). By Corollary 6.17 and the previous Lemma applied with γ = 2
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we have that there exists c0 > 0 such that

P
(
|P(HR0|η)− P(HR0)| ≥ n−c0) ≤ n−c0 ,

for all n ≥ N(θ), as required. �

Before we end this Chapter we will show one more corollary of the results
above. But for that, we will need a RSW version for the Binomial model.
But, this is not so difficult to do, since we already have the RSW Theorem
for annealed Voronoi Percolation, and AVP restricted to the half-plane. We
exceptionally index the probability to avoid confusion, as we did before.

Theorem 6.23 (RSW Theorem for the Binomial Model) Let R0 be a
rectangle with aspect ratio ρ > 0. Then, there exists c2(ρ) > 0 such that

c2 < PBin(n,R0)(HR0) < 1− c2.

To prove that we will need two Lemmas which mimic Lemma 6.12 and
Lemma 6.13, but for the opposite bound (Lemma 6.14 won’t be needed in this
case). We will only prove the analogous result to Lemma 6.12 since, as in the
previous case, the proof regarding the PPo|H will be the same.

Lemma 6.24 Let R′αn be an axis-parallel rectangle strictly contained in
the interior of Rn, where 0 < α ≤ 1

4 . Let E ∈ FR′αn. Consider R
′
α.n. If

PPo(E) ≥ c, then
PBin(n,Rn)(E) ≥ c

4e
−2/c,

provided that n ≥ 64c−1.

Proof. First, observe that in the proof of Lemma 6.12 we have proved that

PPo(E) =
∑
m≥0

PPo|Rn
(
E
∣∣∣|η ∩R′αn| = m

)
PPo|Rn

(
|η ∩R′αn| = m

)
,

and

PBin(n,Rn)(E) =
∑
m≥0

PPo|Rn
(
E
∣∣∣|η ∩R′αn| = m

)
PBin(n,Rn)

(
|η ∩R′αn| = m

)
.

Note that by the properties of the Poisson distribution and Chebyshev’s
Inequality, we have that

PPo
(
||η ∩R′αn| − αn| ≥ k

√
n

)
≤ α.n

k2n
= α

k2 ,

since EPo[|η ∩R′αn|] = V arPo[|η ∩R′αn|] = α.n.
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Now, pick k(c) = c−1/2. Observe that

c ≤
∑
m≥0

PPo|Rn
(
E
∣∣∣|η ∩R′αn| = m

)
PPo|Rn

(
|η ∩R′αn| = m

)
<

∑
|m−n|≤αn

PPo|Rn
(
E
∣∣∣|η ∩R′αn| = m

)
PPo|Rn

(
|η ∩R′αn| = m

)
+ c

2 ,

and we can conclude that

c

2 <
∑

|m−n|≤αn
PPo|Rn

(
E
∣∣∣|η ∩R′αn| = m

)
PPo|Rn

(
|η ∩R′αn| = m

)
.

Now, similarly to what we have done, we will find a lower bound to the ratio
σm/xm. In this case, we claim that

Claim: Given that n ≥ 64c−1, we have that for all αn − k
√
n ≤ m ≤

αn+ k
√
n,

σm
xm
≥ e−2/c

4
Proof. By similar approximations (using Stirling’s formula), we have that for
all m in the desired interval

σm
xm
≥ 2π
e2

(1− α)n−me−m
e−αn

(
n

n−m

)n−m+1/2
.

Since k
√
n < n/8, by the imposed condition, we may also continuously extend

this function. Again consider m = βn for some β ∈ [α− k√
n
, α+ k√

n
] and define

h : [α− k√
n
, α + k√

n
]→ R+ as:

h(β) := 2π
e2
√

1− β

(
1− α− β

1− β

)(1−β)n
e(α−β)n

≥ 2π
e2
√

1− β e
− (α−β)2

1−β n ≥ 2π
e2 e

−2k2

≥ e−2/c

4

�

With that, we may finally conclude that

PBin(n,Rn)(E) ≥ e−c/2

4
∑

|m−n|≤αn
PPo|Rn

(
E
∣∣∣|η ∩R′n| = m

)
PPo|Rn

(
|η ∩R′n| = m

)

> c
e−c/2

4 ,
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and so we conclude this result.
�

And a similar result will carry out for PPo|H

Lemma 6.25 (Close to one boundary events.) Let R′αn be an axis-
parallel rectangle that has one of its sides “glued” to one of Rn sides,
where 0 < α ≤ 1

4 . Let E ∈ FR′αn. Consider R
′
α.n. If PPo|H(E) ≥ c, then

PBin(n,Rn)(E) ≥ c

4e
−2/c,

provided that n ≥ 64c−1.

Now we can prove the RSW-type result:
Proof.[Proof of RSW Theorem for the Binomial model] As we have remarked
(many times) during this thesis, we only need to prove that for all n ∈ N,
PBin(n,R0)(HR0) ≥ c2 > 0 for R0 with aspect ratio 1.5, since we also have by
duality that for all n ∈ N, PBin(n,S)(HS) = 1/2, where S is the square.

So consider R0 a rectangle with aspect ratio ρ = 3
2 and renormal-

ize it to have area n. So, we can say without loss of generality that
R0
n = [0,√ρ · n] × [0,

√
n
ρ
]. Now consider consider the two rectangles R1

n :=
[0, 2

3
√
ρ · n]× [3

8

√
n
ρ
, 5

8

√
n
ρ
] and R2

n := [1
3
√
ρ · n,√ρ · n]× [3

8

√
n
ρ
, 5

8

√
n
ρ
]. Also de-

fine R3
n to be the rectangle formed by the intersection between R1

n and R2
n

and note that R3 = [1
3
√
ρ · n, 2

3
√
ρ · n]× [3

8

√
n
ρ
, 5

8

√
n
ρ
]. Now, let Dj, j ∈ {1, 2, 3}

denote the event that for every z ∈ Rj, there exists some point x ∈ η (η chosen
accordingly to the Poisson distribution) at distance at most n 1

32 from z. Now,
define the events B1 := HR1

n
∩D1, B2 := HR2

n
∩D2 and B3 := VR3

n
∩D3. Now,

thanks to Theorem 4.5, Theorem 6.11, and the bound that we made on Dj,
we have that there exists c > 0, such that for all n ≥ N ,

PPo|H(B1) ≥ c,PPo|H(B2) ≥ c and PPo(B3) ≥ c.

Thanks to the conditions imposed by Dj, we have that B1|H ∈ FR′1 , B2|H ∈
FR′2 , and B3 ∈ FR′3 , where each R′i obey the hypothesis on Lemmas 6.24 and
6.25 (we won’t give many details on this since we have done it before! Check
it!). So, we have that there exists φ(c) and N1(c) (so they depend on the aspect
ratio ρ) such that for all n ≥ N1(c)

PBin(n,R0)(B1) = PBin(n,R0
n)(B1) ≥ φ,PBin(n,R0)(B2) ≥ φ and PBin(n,R0)(B3) ≥ φ.
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Finally, by the FKG Inequality (see the image below), we conclude that
for every n (when n < max{N,N1} this is trivial)

PBin(n,R0)(HR0) ≥ c2 > 0,

and the rest of the RSW Theorem follows from that (by using well-known
arguments at this point).

R1 R2

R3

R0

Figure 6.4: Note that the intersection of those three crossings make a horizontal
red crossing in R0.

�

So, we end this Chapter by observing that Theorem 6.2 with this RSW
result gives us that

Theorem 6.26 For every R with aspect ratio ρ, there exists c(ρ) > 0 and
N(ρ) ∈ N, such that

PBin(n,R)(c < P(HR|η) < 1− c) ≥ n−c,

for all n ≥ N .
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7
On the rate of convergence in Quenched Voronoi Percolation

In this final section we show that the arguments discussed in Chapter 6
may be iterated to obtain the following stronger bound on the probability that
P(HR0|η) is far from its mean. We will denote by θ and τ two real constants
in (0, 1).

Theorem 7.1 There exists a sequence γk of positive real numbers such that the
following holds: Let R0 be an axis-parallel rectangle with bounded aspect ratio
ρ ∈ (θ, 1/θ). For each k ≥ 2 and for every t ∈ [τ,∞) there exists N (k)(τ, θ) ∈ N
such that

PBin(n,R0)
(
|P(HR0 |η)− PBin(n,R0)(HR0)| ≥ t

)
≤ e−tγk(logn)k ,

for all n ≥ N (k).

The structure of the proof will follow the same as in Theorem 6.2. Remind
that by the end of Chapter 6 we got that

PBin(n,R0)
(
|P(HR0 |η)− PBin(n,R0)(HR0)| ≥ n−c

)
≤ n−c, (1)

for all n ≥ N . The natural idea is to pick such improved version and use it in
place of Theorem 6.5 to get a stronger bound for the one-arm event. We would,
then, turn ourselves back to Section 6.4 and use the Revealment Theorem to
finally obtain that

PBin(n,R0)
(
|P(HR0|η)− PBin(n,R0)(HR0)| ≥ t

)
≤ e−tγ2(logn)2

,

for all n ≥ N (2).
But this is, indeed, a very optimistic idea. When trying to do it in detail

two problems arise. The first one is that we need the independence properties
of the PPo and PPo|H models, but we have only proved (1) for the Binomial
model. The other one is that Corollary 6.17 of Section 6.4 doesn’t give us that
the desired stronger outer bound of decay e−c(logn)2 .
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When trying to solve the first problem, it would be sufficient to prove
a converse to Lemma 6.12, i.e., low probability events on the Binomial
model implies that the same event has low probability in the Poisson model.
Unfortunately, this is impossible (consider the event that the event that the
number of points in R is not n, for example). So, we will study crossings in a
smaller rectangle R, inside 4R. This can be understood as a different model,
but we will simply think as the study of the event HR for the rectangle 4R,
following the notation PBin(n,4R)(HR).

R

2R

4R

Figure 7.1: When we study such model one may note that we are studying
events that depend on points that are far enough from the boundary This
makes possible the comparison between this model and the Poisson one as we
will see later. We also draw in dashed lines the rectangle 2R. It will be useful
to think of him since we will be studying events E ∈ F2R because the event
HR will depend solely on points inside 2R with a very high probability.

Note that this model urges to be compared with the Poisson Model. In
fact, we have already established one side of the comparison with Lemma 6.12.
The other side will be done in the next Section, see Lemma 7.5.

Our strategy to resolve the first problem is now clear. We simply prove (1)
for the model PBin(n,4R) and deduce an equivalent bound in the Poisson model
using Lemma 7.5. More generally, as we can translate back and forth between
the PPo and PBin(n,4R) models more easily, it is natural to prove the main result
first for the PBin(n,4R) model.

Theorem 7.2 There exists a sequence γk of positive real numbers such that the
following holds: Let R0 be an axis-parallel rectangle with bounded aspect ratio
ρ ∈ (θ, 1/θ). For each k ≥ 2 and for every t ∈ [τ,∞) there exists N (k)(τ, θ) ∈ N
such that

PBin(n,4R0)
(
|P(HR0|η)− PBin(n,4R0)(HR0)| ≥ t

)
≤ e−tγk(logn)k ,
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for all n ≥ N (k).

To deal with boundaries, we will also need to do the same for PPo|H . It
is useful to define 2R∗ and 4R∗ as translations of 2R and 4R. Specifically,
translated so that they are contained in the half plane. So we will study HR

inside the rectangle 4R∗.

R

2R∗

4R∗

Figure 7.2: Now we will study crossings of a rectangle glued to one boundary
and far from the others. This makes possible the comparison between this
model and the Poisson restricted to the half plane, where the half plane is
positioned in the same glued side. We also draw in dashed lines the rectangle
2R∗. It will be useful to think of him since we will be studying events E ∈ F2R∗

(when naturally restricted to H).

We remark that we also need to do the same thing for R glued to the
top, bottom and right side. Since all the results are naturally valid for all those
cases we will omit doing it to avoid being repetitive. This model is naturally
compared to PPo|H where we take H to coincide with left side of R.

We now turn to the second problem. In the previous Chapter we used
Corollary 6.17, which states that

P
(
|P(HR0|η)− P(HR0)| ≥ a(n)1/3

)
≤ a(n)1/3,

where a(n) = E[∑n
m=1 Im(f ηR0)2], to achieve our bound (1). In order to achieve

a stronger probability bound (at the cost of considering a larger deviation)
we require a different inequality relating |P(HR0|η)− P(HR0)| with a(n). This
inequality is given in Section 7.3, see Theorem 7.14.

So, to give an overview of this chapter, we will divide it in 5 sections.
The first section will study the relations between all the defined models. In
the second section we give improved bounds on one-arm events and use them,
together with the Revealment Theorem, to give improved bounds on the sum
of the squares of influences. The third section will be the stronger version

DBD
PUC-Rio - Certificação Digital Nº 1912783/CA



Chapter 7. On the rate of convergence in Quenched Voronoi Percolation 85

of Corollary 6.17 following a similar proof to that given in [1]. In the fourth
section we will finally kick-start the induction and prove Theorem 7.2. In the
fifth section we return to the original model and deduce Theorem 7.1.

7.1
Relations between the models

In this section we will establish the connection between the models. Since
2R has one fourth of the area of 4R, we can obtain from what was done in
Section 6.3 that:

Lemma 7.3 (Far from the boundary events) Let k = n/16. Consider
E ∈ F2Rk . Then

PBin(n,4Rk)(E) ≤ 3PPo(E).

Lemma 7.4 (Close to one boundary events) Let k = n/16 and E ∈
F2R∗

k
. Then

PBin(n,4R∗
k
)(E) < 3PPo|H(E).

But, as we have previously remarked, we also want those Lemmas in the
“opposite” direction.

Lemma 7.5 Let E ∈ F2R. If there exists ε > 0 such that for every m ≥ N1:

PBin(m,4R)(E) < ε,

then, we have that

PPo(E) < ε+ PPo
(
|η ∩ 4R| < N1

)
.

Proof. Let R, 2R and 4R be fixed. Since E ∈ F2R:

PPo(E) =
∑
m≥0

PPo
(
E
∣∣∣|η ∩ 4R| = m

)
PPo

(
|η ∩ 4R| = m

)
=
∑
m≥0

PPo|4R
(
E
∣∣∣|η ∩ 4R| = m

)
PPo

(
|η ∩ 4R| = m

)
=
∑
m≥0

PBin(m,4R)(E)PPo(|η ∩ 4R| = m)

≤ ε+ PPo
(
|η ∩ 4R| < N1

)
.

�

As an easy consequence of the above lemma for N1 = n we deduce the
following corollary:
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Corollary 7.6 Let Rn be a rectangle of area n. Let E ∈ F2Rn. If there exists
ε > 0 such that for every m ≥ n:

PBin(m,4Rn)(E) < ε.

Then
PPo(E) < ε+ e−n.

Again, we may obtain the same result for the half-plane. We will state
only on the latter form, since it will be more useful for our purposes.

Lemma 7.7 Let Rn be a rectangle of area n. Let E ∈ F2R∗n. If there exists
ε > 0 such that for every m ≥ n:

PBin(m,4R∗n)(E) < ε.

Then
PPo|H(E) < ε+ e−n.

Now that we have built the desired connection, we may start generalizing
the desired results.

7.2
Improved bound for the sum of squares of the Influences

In this section we will give an improved bound on the probability that
the sum of squares of the Influences is at least n−ε. This result (Theorem 7.8)
is a strengthening of Lemma 6.22. Our approach, is similar to that given in
Chapter 6. The main difference is that we prove an improved bound for the one
arm event. We also make some other minor changes, such as to the randomized
algorithm.

We remark that we will first do this for the models PPo and PBin(n,4R).
Doing it for the models PPo|H and PBin(n,4R∗) will be essentially equivalent and
we will just point out to the reader how to cover the remaining details.

For η, a set of n points in 4R, each of them chosen uniformly and
independently at random, we denote by gηR : {−1, 1}η → {0, 1} the function
which encodes whether or not there is a horizontal red crossing in R in the
Voronoi tiling given by η. Do not confuse this function with the function f ηR of
Chapter 6! The difference is that the points are now distributed in 4R, while
the function still encodes the existence of a red horizontal crossing in R.
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Theorem 7.8 Let R1 be an axis-parallel rectangle of aspect ratio 3 : 1.
Suppose that there exist constants c, a ∈ R+ and k,N ≥ 1 such that

PPo
(
c < P(HR1

n
|η) < 1− c

)
≥ 1− e−a(logn)k , (2)

for all n ≥ N . Then, for every axis-parallel rectangle R0 of bounded aspect
ratio ρ ∈ (θ, 1/θ), there exist constants M1(a, θ, k,N) and ε(c) such that

PBin(n,4R0)

( n∑
`=1

I2
` (gηR0) ≥ n−ε

)
≤ e−

a
100 (logn)k+1

,

for all n ≥M1.

To prove this Theorem, we will need the following Proposition that
achieves an improved bound for the one-arm event. Again we focus on a one-
arm event to distance ρ−1/2n1/4.

Proposition 7.9 Suppose that condition (2) holds with constants c, a, k,N
and that R0 is an axis-parallel rectangle with aspect ratio ρ ∈ (θ, 1/θ). Then,
there exist constants ε(c) and N1(a, θ, k,N) such that the following holds. Let
u ∈ 3

2R
0
n and define β := 1/√ρ. Then

PBin(n,4R0
n)

(
P(V (u, βn 1

4 |η) ≥ n−ε)
)
≤ e−

a
80 (log(n))k+1

for every n ≥ N1.

Proof. Fix u ∈ 3
2R

0
n. For each j ∈ N, let Aj denote the square annulus, centered

on u, with inner side-length 7j and outer side-length 3.7j. Let Oj be the event
that there exists a blue circuit around the annulus Aj. Let

J = {j ∈ N : n 1
8 ≤ 7j+1 ≤ βn

1
4}.

Denote by C = {Aj : j ∈ J} the collection of annulus (which won’t be partial
in that case because of the way we set the distances). Pick a sufficiently big
l(c) > 0, so that 2−l < c, where c is the same constant as in (2). Now, for each
j ∈ J , let D(1)

j denote the event that P(Oj|η) > 2−4l and let D(2)
j denote the

event that for every z ∈ Aj, there exists some point x ∈ η at distance at most
n

1
32 from z. Finally, define

Dj := D
(1)
j ∩D

(2)
j ,

and note that the events Dj are independent with respect to the Poisson
distribution, since the distance between two annulus is 4.7j, which is always
bigger than the condition imposed by D(2)

j . So, again, just as it happened in
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Chapter 6 we will have a collection of events which depend on disjoint sets,
being independent with respect to PPo. Next we observe that

PPo(D(2)
j ) ≥ 1− e−n1/32 ≥ 1− e−a(logn)k , (3)

for all n ≥ N(a, k). Next, observe that, Aj is composed of 4 rectangles with
aspect ratio 3 : 1. Then, by the FKG inequality combined with condition (2)
we get that

PPo
(
P(Oj|η) ≤ 2−4l

)
≤ 4e−a(logn)k ,

for all n ≥ N8. So, PPo(Dc
j) ≤ 5e−a(logn)k , for n ≥ max{N(a, k), N8}

Now consider D∗ the event that Dj holds for at least half of the elements
j ∈ J , and observe that there exists N∗(a, θ, k) such that

PPo(D∗) ≥ 1− 2|J |(5e−a(logn)k)|J |/2 ≥ 1− e− a
64 (logn)k+1

, (4)

for all n ≥ N∗(a, θ) (in fact N∗ = e8a−1 + θ−50 is sufficiently large).
We now observe that D∗ ∈ F2R0

n
. Consider now Lemma 7.3 to obtain

that
PBin(n,4R0

n)

(
D∗
)
≥ 1− 5e− α

64 (log(n))k+1
,

for all n ≥ max{N(a, k), N∗(a, θ), N8}. So, there exists N∗∗(a) such that

PBin(n,4R0
n)

(
D∗
)
≥ 1− e− α

80 (log(n))k+1
, (5)

for all n ≥ max{N(a, k), N∗(a, θ), N∗∗(a), N8}.
Finally, for those η such that D∗ holds, we get that

PBin(n,4R0
n)
(
V (u, n 1

4 |η)
)
≤ PBin(n,4R0

n)

( ⋂
j∈J

Oc
j |η
)

=
∏
j∈J

PBin(n,4R0
n)(Oc

j |η)

≤ (1− 2−4l)|J |/2 ≤ n−ε,

for some ε(l) > 0. Pick N1 = max{N8, N(a, k), N∗(a, θ), N∗∗(a)} and we
get the desired result, since l depends on c. �

Consider the rectangle R0. Now, just as we did in Chapter 6, we will
define an algorithm A that decides gηR0 and has low revealment. The algorithm
will be, essentially the same as in Chapter 6, but now, we want to decide a
horizontal red crossing in R0 instead of 4R0. So, we will do the following:

Definição 7.10 (Slightly modified Schramm-Steif randomized algorithm)
Let A be the algorithm that, given η, queries bits of ω as follows. First, con-
sider the restriction of η to R0, η|R0 . With that, the algorithm will follow in
the exact same way:
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– Choose a point x in the middle third of the left-hand side of R0 uniformly
at random.

– Explored the boundary between red and blue cells, with red on the left,
starting from x. Here we place boundary conditions as follows: the left-
hand side of R0 is red above x, and blue below, and the bottom of R0 is
also blue. If this path:

– Reaches the right-hand side of R0, then gηR0(ω) = 1.
– Reaches the bottom of R0, and ends at the top, then gηR0(ω) = 0.
– Ends at the top of R0 without reaching the bottom, then go to step

3.

– Explore the boundary between red and blue cells, with red on the right,
starting from x. Here we reverse the boundary conditions, i.e., the left-
hand side of R0 is blue above x, and red below, and the top of R0 is also
blue. If this path:

– Reaches the right-hand side of R, then gηR0(ω) = 1.
– Otherwise gηR0(ω) = 0.

Note that this algorithm queries a bit outside 3
2R

0 with probability
O(n−1/4) (in fact, we much lower probability as we saw with the events D(2)

j ).
So, we may derive a bound for the revealment with the same argument as we
did in Lemma 6.19:

Lemma 7.11 Let A be the alternate Schramm-Steif randomized algorithm.
Then

δA(gηR0) ≤ max
u∈η∩ 3

2R
0
P
(
V (u, n−1/4)|η

)
+O(n−1/4)

almost surely.

Now, we may use Proposition 7.9 to conclude that

Lemma 7.12 We have that

PBin(n,4R0)

(
P(V (u, n− 1

4 |η) ≥ n−ε)
)
≤ e−

a
100 (log(n))k+1

for every n ≥M1(a, θ, k,N).

Proof. When we re-normalize R0 to have area n the distances are multiplied
by βn1/2, where β = 1/√ρ. By the union bound and the fact that there are at
most n points in 3

2R
0
n we may conclude by Proposition 7.9 that

PBin(n,4R0)

(
P(V (u, n− 1

4 |η) ≥ n−ε)
)
≤ n · e−

a
80 (log(n))k+1
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for every n ≥ N1(a, θ, k,N) (note that the worst cases for β are the extremes
1/θ and θ). Since there exists N∗∗∗(a) such that

ne−
a
80 (logn)k+1 ≤ e−

a
100 (logn)k+1 (6)

for all n ≥ N∗∗∗(a), we can pick M1 = max{N1, N
∗∗∗(a)}, and get the desired

result. �

Proof.[Proof of Theorem 7.8] Finally, one may deduce with the Revealment
Theorem for monotone functions that there exists ε(c) such that

PBin(n,4R0)

( n∑
`=1

I2
` (gηR0) ≥ n−ε

)
≤ e

a
100 (logn)k+1

,

for all n ≥M1(a, θ, k,N) := max{N8, N(a, k), N∗(a, θ), N∗∗(a), N∗∗∗(a)}. �

Now, we want this to carry out to the models PPo|H and PBin(n,4R0∗). For
that, first, define hηR to be the same as gηR, but the set of n points η is taken,
naturally, in 4R∗.

Theorem 7.13 Let R1 be an axis-parallel rectangle of aspect ratio 3 : 1.
Suppose that there exists c, a ∈ R+ and k,N ∈ N such that

PPo|H
(
c < P(HR1

n
|η) < 1− c

)
≥ 1− e−a(logn)k , (7)

for all n ≥ N . Then, for every axis-parallel rectangle R0 of bounded aspect
ratio ρ ∈ (θ, 1/θ), there exists M1(a, θ, k,N) and ε(c) such that

PBin(n,4R0∗)

( n∑
`=1

I2
` (hηR0) ≥ n−ε

)
≤ e−

a
100 (logn)k+1

,

for all n ≥M1.

The only difference on the proof of this Theorem, will be the proof of
Proposition 7.9. But, we don’t even have to break in cases as we did in Chapter
6, since we are comparing just with PPo|H . The only difference is that some
annulus will be partial (formed by three rectangles) and some will be full.
Since we don’t want to be over repetitive, we trust the reader to convince
themselves of that and carry out the remaining details.

7.3
Improved bound on the crossing probabilities for Voronoi Percolation

This section will mimic the result of Section 6.4. We will be working
with the model PBin(n,4R) (or PBin(n,4R∗) all the time . The idea will be that
combined with Theorem 7.8 and Theorem 6.5 (or 6.10), we will be able to start
and induction, and prove the desired improved bound. We will begin proving
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it for PBin(n,4R), but the reader will note that it is exactly analogous to the
case PBin(n,4R∗).

Theorem 7.14 Let R be an axis parallel rectangle and denote by R
′ its

rotation by π/2. Suppose that there exists k ≥ 2, M1 ∈ N, γ > 0 and ε > 0
such that

PBin(n,4R)
( n∑
`=1

I2
` (gηR) ≥ n−ε

)
≤ e−γ(logn)k (8)

PBin(n,4R′)
( n∑
`=1

I2
` (gηR′) ≥ n−ε

)
≤ e−γ(logn)k (9)

for all n ≥M1. Then, for any t > 0, there exists N2(t, γ, ε, k) such that:

PBin(n,4R)
(
|P(HR|η)− PBin(n,4R)(HR)| ≥ t

)
≤ e−t(logn)k γ

100 ,

for all n ≥ N2.

For the proof of this Theorem, we require the following Lemma. Note
how it is similar to the idea of relating Variance and Influence in Section 6.4:

Lemma 7.15 For all λ > 0 we have

VarBin(n,4R)(e
λ
2Z) ≤ λ2

4 EBin(n,4R)
[
eλZ

n∑
`=1

eλ.I`(g
η
R)I2

` (gηR)
]

(10)

where Z := P(HR|η).

Proof. Define qη := eλZ/2 for a fixed λ > 0 and qm := EBin(n,4R)
[
qη|Fm

]
where

Fm is the σ-algebra generated by η1, ..., ηm. Define η− as η with ηm deleted.
We have by the Martingale properties that (see [1] for more details):

VarBin(n,4R)(qm − qm−1) ≤ EBin(n,4R)
[
(qη − qη−)2

]
Now we will prove the following claim that will complete the proof

Claim: We have that

|qη − qη− | ≤ λ

2 e
λ
2Ze

λ
2 .Im(gηR)Im(gηR), almost surely

To see this, first consider the case qη > qη
− and observe that by the Mean

Value Theorem

qη − qη− ≤ λ

2 e
λ
2ZIm(gηR), almost surely
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When qη < qη
− , we combine the MVT with the fact that |P(HR|η) −

P(HR|η−)| ≤ Im(gηR), almost surely (see [1] for more details; despite being
a different model, it will follow from the same argument). So, we get that:

qη
− − qη ≤ λ

2 e
λ
2Ze

λ
2 .Im(gηR)Im(gηR), almost surely,

proving the desired claim. Since

VarBin(n,4R)(qη) =
n∑

m=1
VarBin(n,4R)(qm − qm−1),

we conclude the Lemma. �

It is also useful to note the following lemma from analysis (see Lemma
3.19 of [5] for more details):

Lemma 7.16 Let G : (0, 1) → (0,+∞) be a function that satisfies the
following properties:

1. limx→0
(G(x)−1)

x
= 0

2. (1− x2)G(x) ≤ G(x/2)2, for every x ∈ (0, 1).

Then;
G(x) ≤ (1− x2)−2,

for every x ∈ (0, 1).

We are now ready to prove the theorem.
Proof.[Proof of Theorem 7.14] Define A :=

{
η : ∑n

`=1 I
2
` (gηR) ≤ n−ε

}
. Observe

that when the event A holds, we have that for any 0 < λ < nε/2

n∑
`=1

eλ.I`(g
η
R)I2

` (gηR) ≤ e.n−ε.

So, by the Inequality (10), we have that for all λ < nε/2:

EBin(n,4R)
[
eλZ

]
−E2

Bin(n,4R)

[
e
λ
2Z
]
≤ λ2

4 EBin(n,4R)
[
eλZ

n∑
`=1

eλ.I`(g
η
R)I2

` (gηR)
]

≤ eλ2

4nεEBin(n,4R)[eλZ ] + λ2

4 EBin(n,4R)
[
eλZ

n∑
`=1

eλ.I`(g
η
R)I2

` (gηR)1Ac
]
.

Observe that for the second part of the equation:

λ2

4 EBin(n,4R)
[
eλZ

n∑
`=1

eλ.I`(g
η
R)I2

` (gηR)1Ac
]
≤ n

λ2e2λ

4 PBin(n,4R)(Ac)
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Also, by Condition 8 of our statement, we have that for all n ≥M1:

PBin(n,4R)(Ac) ≤ e−γ(logn)k

So, for λ < γ
3 (log n)k

λ2

4 EBin(n,4R)
[
eλZ

n∑
`=1

eλ.I`(g
η
R)I2

` (gηR)1Ac
]
≤ λ2

4 e
− γ3 (logn)k+logn

for all n ≥M1. Since EBin(n,4R)
[
eλZ

]
≥ 1:

EBin(n,4R)
[
eλZ

]
− E2

Bin(n,4R)

[
e
λ
2Z
]
≤ EBin(n,4R)

[
eλZ

](eλ2

4nε + λ

4 e
−γ
3 (logn)k+logn

)
.

Note that there exists M2(ε, γ, k) (the worst case is when λ = γ
3 (log n)k) such

that eλ2

4nε + λ

4 e
− γ3 (logn)k+logn <

100
γ2(log n)2k , (11)

for all n ≥M2. Let M3 = max{M1,M2}. Then:

EBin(n,4R)
[
eλZ

]
− E2

Bin(n,4R)

[
e
λ
2Z
]
≤

EBin(n,4R)
[
eλZ

]
.100λ2

γ2(log n)2k ,

for all n ≥M3 and 0 < λ < γ
3 (log n)k. Now we define F : [0,+∞)→ R

F (λ) =

EBin(n,4R)[eλ(Z−EZ)], if 0 ≤ λ ≤ γ
3 (log n)k,

0 if λ ≥ γ
3 (log n)k

Note that 1− 100λ2

γ2(log n)2k

F (λ) ≤
(
F (λ/2)

)2
.

Now, we consider G(x) := F (γ(logn)k
10 x) for every x ∈ (0, 1) and observe

that the following properties of G hold.
First, note that G(0) = 1 and G′(0) = 0, since it satisfies the conditions

of Leibniz’s Rule. Next we have that:

(1− x2)G(x) ≤ G(x/2)2,

for every x ∈ (0, 1).
We may now apply this Lemma 7.16 to get that for every λ ∈

(0, γ10(log n)k)
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F (λ) ≤
1− 100λ2

γ2(log n)2k

−2

.

Pick λ0 = γ(logn)k
20 . Then F (λ0) ≤ 2 for every n ≥M3.

Finally, we let H(x) := ex
γ
20 (logn)k . By Markov’s Inequality we have that

for every t > 0:

PBin(n,4R)(Z − EBin(n,4R)[Z] ≥ t) ≤
E
[
H
(
Z − EBin(n,4R)[Z]

)]
H(t)

≤ 2.e−t
γ
20 (logn)k .

Since for any probability measure

P(|Z − E[Z]| ≥ t) ≤ P(Z − E[Z] ≥ t) + P(Z − E[Z] ≤ −t),

and by the Inequality (9), we may conclude by duality that

P(Bin(n,4R)(|Z − EBin(n,4R)[Z]| ≥ t) ≤ 4.e−t
γ
20 (logn)k ,

for every n ≥M3. Let t > 0 be a fixed constant and pick up M4(γ, t) such that

4.e−t
γ
20 (logn)k ≤ e−t

γ
100 (logn)k . (12)

So, we get that for N2 = max{M3,M4(γ, t)}

PBin(n,4R)(|Z − EBin(n,4R)[Z]| ≥ t) ≤ e−t
γ

100 (logn)k ,

for every n ≥ N2(t, γ, ε, k) := max{M1,M2(ε, γ, k),M4(γ, t)}. �

The reader may note that the only fact that we used from PBin(n,4R) is
that it has a fixed number of points. So we may state the following theorem
for PBin(n,4R∗) and the proof will carry out in the exact same way.

Theorem 7.17 Let R be an axis parallel rectangle and denote by R
′ its

rotation by π/2. Suppose that there exists k ≥ 1, M1 ∈ N, γ > 0 and ε > 0
such that

PBin(n,4R∗)
( n∑
`=1

I2
` (hηR) ≥ n−ε

)
≤ e−γ(logn)k

PBin(n,4R′∗)
( n∑
`=1

I2
` (hηR′) ≥ n−ε

)
≤ e−γ(logn)k
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for all n ≥M1. Then, for any t > 0, there exists N2(t, γ, ε, k) such that:

PBin(n,4R∗)
(
|P(HR|η)− PBin(n,4R∗)(HR)| ≥ t

)
≤ e−t(logn)k γ

100 ,

for all n ≥ N2.

7.4
Proof of the Main Theorem for the auxiliary models

In this section we prove Theorem 7.2. In fact we shall prove a version
which is more explicit about the value of N (k). We show that we may take
N (k) = N8k−1 , a double exponential function, where the base N , is a constant
which depends only on θ and τ .

Theorem 7.18 There exists a sequence γk of positive real numbers such that
the following holds: Let R0 be an axis-parallel rectangle with bounded aspect
ratio ρ ∈ (θ, 1/θ) (with θ ≤ 1/3). For each k ≥ 2 and for every t ∈ [τ,∞)
(with τ ≤ ψ/2, where ψ is a constant defined in (13))

PBin(n,4R0)(|P(HR0|η)− PBin(n,4R0)(HR0)| ≥ t) ≤ e−tγk(logn)k ,

for all n ≥ N8k−1, where N = N(θ, τ) is the same constant defined in (14).

Imposing that θ ≤ 1/3 and τ ≤ ψ/2 loses no generality, since those are the
harder cases that includes when we make no demands on θ and τ . From now on
Just as we did in the previous sections, we will do it for the model PBin(n,4R) and
observe that an analogous proof will give us the same theorem for PBin(n,4R∗).

This result is proved by induction. To prove the base case k = 2 we
require a result at the k = 1 level. This result, which we state as Lemma 7.19,
is essentially just a version of Theorem 6.2 for the PBin(n,4R) model. Since the
result is very close to that theorem we simply sketch the proof.

Lemma 7.19 For all θ ∈ (0, 1/2), there exists M(θ) ≥ 1 and 1/4 > γ > 0
such that the following holds. Let R0 be an axis-parallel rectangle with aspect
ratio ρ ∈ (θ, 1/θ). Then

PBin(n,4R0)
(
|P(HR0|η)− PBin(n,4R0)(HR0)| ≥ n−γ

)
≤ n−γ,

for every n ≥M .

Proof.[Sketch of the proof] It will follow essentially from the following three
basic facts:
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RSW Theorem for the PBin(n,4R) model: Observe that as a conse-
quence of the RSW Theorem for annealed Voronoi Percolation and Lemma
6.24 we have that the RSW Theorem for the PBin(n,4R) model. In particular, if
we pick the Rectangle R1 of aspect ratio 3 : 1, we have that there exists ψ > 0
such that for all n

ψ < PBin(n,4R1)(HR1) < 1− ψ. (13)
Weaker bound for the Poisson model: That is, we have by Theorem

6.5 that there exists φ depending only on the aspect ratio of R1 (which is a
fixed constant 3), such that

PPo
(
P
(
HR1|η

)
≤ 1

2k
)
≤ (1− φ)k,

for all sufficiently large k ∈ N.
And finally, a version of Corollary 6.17 for the PBin(n,4R) model:

Indeed, the same proof gives us:

Corollary 7.20 For every rectangle R, let a(n) = E
[∑n

m=1 Im(gηR)2
]
. Then

PBin(n,4R)
(
|P(HR|η)− PBin(n,4R)(HR)| ≥ a(n)1/3

)
≤ a(n)1/3.

With those, the only difference for the proof of Theorem 6.2 is that we
will define an algorithm to decide gηR just as we did Chapter 7.1. We expect
the readers to convince themselves of that. �

We will apply Lemma 7.19 for θ = 1/3. So, it works for R1 the rectangle
of aspect ratio 3 : 1. So, there exists M(1/3) such that:

PBin(n,4R1)
(
|P(HR1|η)− PBin(n,4R1)(HR1)| ≥ n−γ

)
≤ n−γ,

for every n ≥M .
We may now define the constant N = N(θ, τ) included in the statement

of Theorem 7.18. We will also be interest in picking up θ ≤ 1/3 so it contains
the ratio of the rectangle R1. We recall that ψ is defined in (13) . Set ε(ψ/2) > 0
as in Theorem 7.8. Let N(θ, τ) be defined as the smallest integer such that

log(N) ≥ 100| log(θ)|+ (400/ψ)8 + 1/τ 8 + (400/γ)8 + (1/ε4)1/ε4 +M. (14)

Now note that for every n ≥ N such that ψ/2 > n−γ for all n ≥ N . So,
we have that for R1

PBin(n,4R1)

(
ψ

2 < P(HR1 |η) < 1− ψ

2

)
≥ 1− e−γ logn,
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for all n ≥ N .
Define the events E(1) := {ψ2 < P(HR1|η) < 1− ψ

2 } and E
(2) := { no point

outside 2R1 interferes in the event E(1)}. Set E := E(1)∩E(2) and observe that
both E ∈ F2R1 and

PBin(n,4R1)(E) ≥ 1− e−
γ
2 logn,

for all n ≥ N . Consider R1
n. In particular, we may renormalize the event E,

to an event En := E(1)
n ∩ E(2)

n , where E(1)
n := {ψ2 < P(HR1

n
|η) < 1 − ψ

2 } and
E(2) := { no point outside 2R1

n interferes in the event E(1)
n }. Since, we have

that
PBin(m,4R1)(Ec) ≤ e−

γ
2 logm,

for all m ≥ N , by the properties of the binomial distribution, the same applies
to the renormalized rectangle

PBin(m,4R1
n)(Ec

n) ≤ e−
γ
2 logm,

for all m ≥ N . From which it follows that

PBin(m,4R1
n)(Ec

n) ≤ e−
γ
2 logn,

for all m ≥ n, whenever n ≥ N .
We may now finally use the comparison from PBin(n,4R1

n) to PPo. Applying
Corollary 7.6 we obtain

PPo
(
ψ

2 < P(HR1
n
|η) < 1− ψ

2

)
≥ 1− e−

γ
4 logn, (15)

for all n ≥ N(θ, τ).
Proof.[Proof of Theorem 7.18] We will prove this result by induction:

Base Case k = 2 : Our approach will be based on Theorem 7.8 and
Theorem 7.14. Let R0 be a rectangle of bounded aspect ratio ρ ∈ (θ, 1/θ).
By the conditions satisfied in Inequality (15), we can use Theorem 7.8 to
deduce that there exists ε(ψ) (the same that we picked before) such that for
all R ∈ (R0, R0′, R1, R1′),

PBin(n,4R0)

(
n∑
`=1

I2
` (gηR0) ≥ n−ε

)
≤ e−

γ
400 (logn)2

, (16)

for all n ≥ M1. We remind the reader that the constant M1 of Theo-
rem 7.8 may be taken to beM1 = max{N8, N(γ, 1), N∗(γ, θ), N∗∗(γ), N∗∗∗(γ)},
where N(γ, 1), N∗(γ, θ), N∗∗(γ) and N∗∗∗(γ) are the functions defined in the
proofs of Proposition 7.9 and Lemma 7.12 respectively. It is easily checked,
with the value of N we have chosen (14) that the maximum is obtained by N8.
And so we have(16) for all n ≥M1 = N8.
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With that, all the inequalities are satisfied by N already, and so N8 is
by a large margin the maximum.

We may now use the condition given by (16), and with Theorem 7.14 we
conclude that for any t > 0 and R ∈ (R0, R0′, R1, R1′),

PBin(n,4R)(|P(HR|η)− PBin(n,4R)(HR)| ≥ t) ≤ e
−t(logn)2 γ

(200)2 ,

for all n ≥ N2. We should again ask ourselves if we can decide the
behavior of N2. We remind the reader that N2 of Theorem 7.14 may be taken to
be that N2 := max{M1,M2(ε, γ, k),M4(γ, t)}, where M2(ε, γ, k) and M4(γ, t)
are the functions defined in the proof of Theorem 7.14. Remember that as we
have seen,M1 = N8. In fact, this again will be the chosen maximum. To observe
this, it is useful that N also satisfies that log(N) ≥ (1/ε4)1/ε4 +1/τ 8+(400/γ)8,
when controlling M2 and M4. One may also note that the worst case when
controlling M4, given by Inequality (12), is when t = τ . So, using simple
inequalities together with the imposed conditions, one may conclude that
N2 = N(θ, τ)8 for every t ∈ [τ,∞).

And so we have proved that for R0 with bounded aspect ratio ρ ∈ (θ, 1/θ)
(which includes the rectangle of aspect ratio 3 : 1) we have that for all
t ∈ [τ,∞)

PBin(n,4R0)
(
|P(HR0|η)− PBin(n,4R0)(HR0)| ≥ t

)
≤ e−t(logn)2 γ

2002 ,

for all n ≥ N (2) = N8.
Applying this for R1 and t = ψ/2, which is perfectly fine since they

belong to the intervals give us that:

PPo
(
ψ

2 < P(HR1
n
|η) < 1− ψ

2

)
≥ 1− e−

ψ
2 (logn)2 γ

4(200)2 ,

for all n ≥ N (2) =: N8, where N is the same as the one defined in (14). With
that, we have a reasonable guess to our induction. That is:

Inductive step k ≥ 3: We think of k as j+1 for some j ≥ 2. So we may
assume the following by the induction hypothesis. Let R0 be an axis parallel
rectangle with bounded aspect ratio ρ ∈ (θ, 1/θ) and t ∈ [τ,∞) the following
holds:

PBin(n,4R0)
(
|P(HR0 |η)− PBin(n,4R0)(HR0)| ≥ t

)
≤ e

−t(ψ2 )j−2(logn)j γ

(200)2(j−1) ,

for all n ≥ N (j) = N8j−1 .
By arguing as above (k = 2 case) we obtain
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PPo
(
ψ

2 < P(HR1
n
|η) < 1− ψ

2

)
≥ 1− e−(ψ2 )j−1(logn)j γ

4(200)2(j−1) , (17)

for all n ≥ N8j−1 .
With Inequality (17) and what was already done in the case k = 2, the

proof of the induction step it is fairly easy. One may note that by Theorem
7.8:

PBin(n,4R0)

(
n∑
`=1

I2
` (gηR0) ≥ n−ε

)
≤ e

−(ψ2 )j−1(logn)j+1 γ

400(200)2(j−1) ,

for all n ≥M1. Again, we ask ourselves what will be the behavior of M1.

Using now the hypothesis that N also satisfies that log(N) ≥ (400/ψ)8, turns
this easy with the same previous arguments. In fact, the growth of the exponent
in N8j−1 is turning the inequalities even easier, even though the exponent on
α(log n)j is getting bigger and the constant α is getting smaller. With simple
computations we may conclude that M1 = (N8j−1)8 = N8j .

We will now use Theorem 7.14 to conclude that

PBin(n,4R)(|P(HR|η)− PBin(n,4R)(HR)| ≥ t) ≤ e
−t(ψ2 )j−1(logn)j+1 γ

(200)2j ,

for all n ≥ N2. Again N2 = N8j . Then, we conclude the induction step, thus,
finishing the proof. We left the remaining details to the reader. �

Now that we have proved it we finally observe that the same result is valid
for the PBin(n,4R∗) (maybe with different constants, but just pick the worst !)

Theorem 7.21 Let R0 be an axis-parallel rectangle with bounded aspect ratio
ρ ∈ (θ, 1/θ). For each k ≥ 2, the following holds: For every t ∈ [τ,∞)

PBin(n,4R0∗)
(
|P(HR0|η)− PBin(n,4R0∗)(HR0)| ≥ t

)
≤ e

−t(ψ2 )k−2(logn)k γ

2002(k−1)

for all n ≥ N (k)(θ, τ) = N8k−1.

This comes with the exact same proof as we did for the PBin(n,4R0) case
but substituting Lemma 7.6 for Lemma 7.7, Theorem 7.8 for Theorem 7.13,
Theorem 7.8 for Theorem 7.17, and that PBin(n,4R1∗)(HR1) is in the interval
(ψ, 1−ψ) for every n, which comes from Lemma 6.25 instead of 6.24. We also
get as a of the proof that for all k ≥ 1

PPo|H
(
ψ

2 < P(HR1
n
|η) < 1− ψ

2

)
≥ 1− e−(ψ2 )k−1(logn)k γ

4(200)2(k−1) ,
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for all n ≥ N8k−1 . With this fact, that will be fundamental in the proof of our
final result, we end this chapter.

7.5
Final remarks to achieve the improvement on the original model

In this final section we will turn ourselves back to the original model
PBin(n,R) so we can achieve the improved bound for it. We will also do two
corollaries of this improved bound. This result will come from three facts. The
first two were proven in the last section, and we now state them as theorems.
Consider γk := (ψ2 )k−1 γ

4(200)2(k−1) . So

Theorem 7.22 Let R1 be the rectangle of aspect ratio 3 : 1. So, for every
k ≥ 1 we have that

PPo
(
ψ

2 < P(HR1
n
|η) < 1− ψ

2

)
≥ 1− e−γk(logn)k ,

for all n ≥ N8k−1.

Theorem 7.23 Let R1 be the rectangle of aspect ratio 3 : 1. So, for every
k ≥ 1 we have that

PPo|H

(
ψ

2 < P(HR1
n
|η) < 1− ψ

2

)
≥ 1− e−γk(logn)k ,

for all n ≥ N8k−1.

The other important fact is that similarly to the fact that we can translate
Corollary 6.17 to the PBin(n,4R) model, we can also translate Theorem 7.14 to
a version for the original binomial model PBin(n,R), without any change in the
proof.

Theorem 7.24 Let R be an axis parallel rectangle rectangle and denote by R′

its rotation by π/2. Suppose that there exists k ≥ 2, M1 ∈ N, γ > 0 and ε > 0
such that

PBin(n,R)
( n∑
`=1

I2
` (f ηR) ≥ n−ε

)
≤ e−γ(logn)k (18)

PBin(n,R′)
( n∑
`=1

I2
` (f ηR′) ≥ n−ε

)
≤ e−γ(logn)k (19)

for all n ≥M1. Then, for any t > 0, there exists N2(t, γ, ε, k) such that:

PBin(n,4R)
(
|P(HR|η)− PBin(n,4R)(HR)| ≥ t

)
≤ e−t(logn)k γ

100 ,
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for all n ≥ N2.

With those 2 Theorems, we will prove Theorem 7.1. More specifically

Theorem 7.25 Let R0 be an axis-parallel rectangle with bounded aspect ratio
ρ ∈ (θ, 1/θ). For each k ≥ 1, the following holds: For every t ∈ [τ,∞)

PBin(n,R0)
(
|P(HR0|η)− PBin(n,R0)(HR0)| ≥ t

)
≤ e

−t(logn)k+1 γk
(200)2 ,

for all n ≥ N8k .

Proof. With Theorems 7.22 and 7.23 we can produce a similar proof of Theorem
7.8 for the Binomial model for each k ≥ 1. The only difference is that we will
have to break in 3 cases just as we did in the proof of Theorem 6.2. This will
make the constant a little bit worse, since in the first case we can only use that
|J | ≥ log n/90. But this won’t be a major problem. In fact, we can guarantee
that for all R0 with bounded aspect ratio ρ ∈ (θ, 1/θ) there exists ε(ψ) (the
same as before) such that

PBin(n,R0)

( n∑
`=1

I2
` (f ηR0) ≥ n−ε

)
≤ e−(logn)k+1 γk

200 ,

for all n ≥ (N8k−1)8 (by the same reasons as before). With Theorem 7.24 we
can finally conclude that for all k ≥ 1 and R0 ∈ (ρ, 1/ρ) and t ∈ [τ,∞):

PBin(n,R0)
(
|P(HR0|η)− PBin(n,R0)(HR0)| ≥ t

)
≤ e

−t(logn)k+1 γk
(200)2 ,

for all n ≥ N8k . �

We can now derive from that, the following two corollaries:

Corollary 7.26 There exists N = N(θ, τ) such that the following holds. Let
R0 be an axis-parallel rectangle with aspect ratio ρ ∈ (θ, 1/θ). Then for every
t ∈ [τ,∞)

PBin(n,R0)

(∣∣∣P(HR0|η)− PBin(n,R0)(HR0)
∣∣∣ ≥ t

)
≤ e−e

(log logn)2/20
,

for every n ≥ N .

Proof. Let τ > 0 be fixed. Consider R0 in a collection of rectangles with
bounded aspect ratio ρ ∈ (θ, 1/θ). By the choice of N(θ, τ) and the behavior
of γk we have by Theorem 7.25 that
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PBin(n,R0)
(
|P(HR0 |η)− PBin(n,R0)(HR)| ≥ t

)
≤ e

−t(logn)k+1 γk
(200)2 ≤ e−(logn)k/2

,

(20)
for all n ≥ N8k . Now pick N∗(θ, τ) such that:

log log n ≥ 2log logN, (21)

for all n ≥ N∗. We will show that

PBin(n,R0)

(∣∣∣P(HR0 |η)− PBin(n,R0)(HR0)
∣∣∣ ≥ t

)
≤ e− logn(log(logn))/20

,

for all n ≥ N∗.
Choose the maximum k(n) such that n ≥ N8k . Since n < N8k+1 , we have

by the Inequality (21) that for all n ≥ N∗

k ≥ log log n/10.

With that, we can conclude that

e−(logn)k/2 ≤ e−(logn)log logn/20
,

for all n ≥ N∗. By the Inequality (20) we finally have

PBinn,R
(∣∣∣P(HR|η)− P(HR)

∣∣∣ ≥ t
)
≤ e− logn(log(logn))/20 = e−e

(log(logn))2/20
,

for all n ≥ N∗, concluding our proof. �

We can also prove the almost sure convergence result. We will get by the
Borel-Cantelli Lemma that:

Corollary 7.27 For every rectangle R0 with aspect ratio ρ ∈ (θ, 1/θ):

PBin(n,R0)

(
lim
n→∞

|P(HR0|η)− PBin(n,R0)(HR0)| = 0
)

= 1

We remark that we can’t state that limn→∞ P(HR0|η) = limn→∞ P (HR0),
since the convergence of crossing probabilities P(HR0) in Voronoi percolation
remains open. .
Proof. Note that

PBin(n,R0)

(
lim
n→∞

|P(HR0|η)− PBin(n,R0)(HR0)| = 0
)

=

1− PBin(n,R0)

( ⋃
j≥1

lim sup
n→∞

|P(HR0|η)− PBin(n,R0)(HR0)| > 1/j
)

(22)
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Now, let j ∈ N be fixed. Define En,j :=
{
|P(HR0|η)− PBin(n,R0)(HR0)| ≥

1/j
}
. Note that by Theorem 7.25 (for k = 1) we have that there exists

M = N(1/j)

PBin(n,R0)

(∣∣∣P(HR0|η)− PBin(n,R0)(HR0)
∣∣∣ ≥ 1/j

)
≤ e−a(logn)2

,

for all n ≥ N8. So, we have that for every fixed j that ∑∞n=1 PBinn,R(En,j) <∞.
By the first Borel-Cantelli Lemma (A.3), we have that

PBin(n,R0)

(
lim sup
n→∞

En,j

)
= 0

Finally, we may use the union bound to conclude that

PBin(n,R0)

(
lim
n→∞

|P(HR0 |η)−P (HR0)| = 0
)
≥ 1−

∞∑
j=1

PBin(n,R0)(lim sup
n→∞

En,j) = 1,

and we finish our proof. �

With that, we have finally reached the end of this journey. I would be
very happy to talk with interested people in this area. Percolation and Noise
Sensitivity Theory are both new and amazing fields of mathematics. I would
also like to thank my advisor Simon Griffiths. If it wasn’t for him, I would never
be able to accomplish this. More than that, I would have quit mathematics. I
also thank professor Daniel Ahlberg for his useful commentaries. I wish that
we can start new projects soon.

We all walked through a long journey, that I hope it has just started.

DBD
PUC-Rio - Certificação Digital Nº 1912783/CA



Bibliography

[1] AHLBERG, D.; GRIFFITHS, S.; MORRIS, R. ; TASSION, V.. Quenched
voronoi percolation. Advances in Mathematics, 286:889 – 911, 2016.

[2] BENJAMINI, I.; KALAI, G. ; SCHRAMM, O.. Noise sensitivity of
Boolean functions and applications to percolation. Inst. Hautes
udes Sci. Publ. Math., (90):5–43 (2001), 1999.

[3] BOLLOBÁS, B.; RIORDAN, O.. The critical probability for random
voronoi percolation in the plane is 1/2. Probability Theory and Related
Fields, 136(3):417–468, Dec 2005.

[4] BOLLOBÁS, B.; RIORDAN, O.. Percolation. Cambridge University Press,
2006.

[5] BOUCHERON, S.; LUGOSI, G. ; MASSART, P.. Concentration Inequal-
ities: A nonasymptotic theory of independence. OUP Oxford, 01
2013.

[6] BROADBENT, S. R.; HAMMERSLEY, J. M.. Percolation processes:
I. crystals and mazes. Mathematical Proceedings of the Cambridge
Philosophical Society, 53(3):629–641, 1957.

[7] DURRETT, R.. Probability: Theory and Examples. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, 5
edition, 2019.

[8] FORTUIN, C. M.; KASTELEYN, P. W. ; GINIBRE, J.. Correlation
inequalities on some partially ordered sets. Comm. Math. Phys.,
22(2):89–103, 1971.

[9] GARBAN, C.; STEIF, J. E.. Noise Sensitivity of Boolean Functions
and Percolation. Institute of Mathematical Statistics Textbooks. Cam-
bridge University Press, 2014.

[10] GRIMMETT, G.. Percolation. Springer-Verlag, 1989.

[11] HARRIS, T. E.. A lower bound for the critical probability in a cer-
tain percolation process. Mathematical Proceedings of the Cambridge
Philosophical Society, 56(1):13–20, 1960.

DBD
PUC-Rio - Certificação Digital Nº 1912783/CA



Bibliography 105

[12] JOOSTEN, M.. Random fractals and scaling limits in percolation.
2007.

[13] MOSSEL, E.; O’DONNELL, R. ; OLESZKIEWICZ, K.. Noise stability of
functions with low influences: invariance and optimality. Annals
of Mathematics, 171 (2010):295–341, 2010.

[14] O’DONNELL, R.. Analysis of Boolean Functions. Cambridge University
Press, 2014.

[15] SCHRAMM, O.; STEIF, J. E.. Quantitative noise sensitivity and
exceptional times for percolation. Annals of Mathematics, 171
(2010):619–672, 2010.

[16] SMIRNOV, S.; WERNER, W.. Critical exponents for two-dimensional
percolation. Math. Res. Lett., 8(5-6):729–744, 2001.

[17] STEIF, J. E.. A mini course on percolation theory. Jyväskylä lectures
in mathematics, (3), 2011.

[18] TASSION, V.. Crossing probabilities for voronoi percolation. The
Annals of Probability, 44(5):3385–3398, 2016.

[19] VORONOI, G.. Nouvelles applications des parametres continus a la
theorie des formes quadratiques. premier memoire. sur quelques
proprietes des formes quadratiques positives parfaites. Journal fur
die reine und angewandte Mathematik, 133:97–178, 1908.

DBD
PUC-Rio - Certificação Digital Nº 1912783/CA



A
Classic Inequalities

We state and prove some of the most used inequalities in this section.
Since some of them are widely known and given in Basic Probability courses,
we will just state them and refer to [7] for more details. In contrast, the less
usual ones will be rigorously proved.
Theorem A.1 (Holder’s Inequality) Let (Ω,F , µ) be a measure space, and
let p, q ∈ [0, 1] with 1/p + 1/q = 1. Then, for all f, g real-valued measurable
functions on (Ω,F , µ):

‖fg‖1 ≤ ‖f‖p ‖g‖q .

Theorem A.2 (Lebesgue Dominated Convergence Theorem) Let
(fn) be a sequence of real-valued measurable functions on a measure space
(Ω,F , µ). Suppose that fn(x) → f(x), µ−almost surely. Suppose that there
exists an integrable function g such that |fn(x)| ≤ g(x), for every n and for
almost every x ∈ Ω. Then, f is integrable and

lim
n→∞

∫
Ω
fndµ =

∫
Ω
fdµ (1)

Theorem A.3 (First Borel-Cantelli Lemma) Let E1, E2, ... be a sequence
of events in a probability space. If we have that

∞∑
i=1

P(Ei) <∞,

then
P
( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 0.

Theorem A.4 (Second Borel-Cantelli Lemma) Let E1, E2, ... be a se-
quence of independent events (it may also be weakened to pairwise indepen-
dence) in a probability space. If

∞∑
i=1

P(Ei) =∞,
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then
P
( ∞⋂
n=1

∞⋃
k=n

Ek

)
= 1.

Theorem A.5 (Markov’s Inequality) If g : R+ → R+ is a monotonically
increasing function, X is a random variable a ≥ 0 and g(a) > 0, then

P(|X| ≥ a) ≤ E[g(|X|)]
g(a) .

Theorem A.6 (Chebyshev’s Inequality) If X is a random variable, E[X]
if finite, and V ar(X), a > 0, then

P(|X − E[X]| ≥ a) ≤ V ar(X)
a2 .

Theorem A.7 (Stirling’s Approximation) We have that for all n ≥ 1

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n.

The first inequality to be proved is of fundamental importance to
Percolation Theory. It was first proved by Harris in [11], and later extended to
other contests by Fortuin, Kasteleyn, and Ginibre in [8]. As it is stated below,
the reader shall note that it is both valid for our applications in Quenched
Voronoi Percolation and Percolation on Z2. But first, we need to take a few
definitions to a more general context. This was based in [10].

Definição A.8 Consider (Ω,F ,Pp) a probability space. We take Ω =∏
s∈S{−1, 1} where S is finite or countably infinite, F is the σ−field gener-

ated by the cylinder sets of Ω, and Pp is a product measure on (Ω,F) defined
by :

P =
∏
s∈S

µs,

where µs is given by µs(ω(s) = 1) = p, µs(ω(s) = −1) = 1 − p, for vectors
ω = (ω(s) : s ∈ S) ∈ Ω and p ∈ [0, 1].

Similar to what we have done before, we consider a real-valued random
variable X on (Ω,F) to be increasing if X(ω) ≤ X(ω′) whenever ω ≤ ω′

( i.e. ωi ≤ ω′i, for every i ∈ S). A is called an increasing event int F if
1A(ω) ≤ 1A(ω′) for ω ≤ ω′.
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One may note that this do not depend upon the lattice structure of the
percolation process. So, the following results will be valid for the Triangular
Lattice, Z2, and even Quenched Voronoi Percolation (having in mind the fact
that the Poisson Point Process generates a countably infinite number of points
with probability 1) .

This first theorem is rather intuitive, but will proved to get the reader
used to the previous definition.

Theorem A.9 If X is a real-valued increasing random variable on (Ω,F)
then

Ep1(X) ≤ Ep2(X), whenever p1 ≤ p2, (2)
so long as the mean value exist. If A is an increasing event in F then

Pp1(A) ≤ Pp2(A), whenever p1 ≤ p2. (3)

Proof. Let the random variables (Y (ω) : ω ∈ Ω) be independent and uniformly
distributed on [0, 1]. We write

ηp(ω) =

1 Y (ω) < p

−1 otherwise.

If p1 ≤ p2 then ηp1 ≤ ηp2 , and since X is an increasing random variable
on (Ω,F) X(ηp1) ≤ X(ηp2). So we may take expectation on both sides and
conclude that Ep1(X) ≤ Ep2(X). The second part follows when we apply the
first part to X = 1A. �

Now we are finally able to state the FKG inequality.

Theorem A.10 (Classic FKG Inequality) If X and Y are both increasing
(or both decreasing) bounded real-valued random variables, then

Ep(XY ) ≥ Ep(X)Ep(Y ). (4)

If one of the random variables in increasing, and the other decreasing, we get
the inverted inequality Ep(XY ) ≤ Ep(X)Ep(Y ).

Proof. First we prove it for real-valued random variables X and Y which only
depend on a finite number of states of Ω. Then, we will lift this restriction.

Suppose then that X and Y are increasing real-valued random variables
which depend only on the states of ω1, ..., ωn. We will prove this result by
induction in n.
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Suppose that n = 1. Then, by monotonicity of X and Y we have that
for every pair a1, a2 ∈ Ω

(X(a1)−X(a2))(Y (a1)− Y (a2)) ≥ 0.

Thus,

0 ≤
∑
a1,a2

(X(a1)−X(a2))(Y (a1)− Y (a2))Pp(ω = a1)Pp(ω = a2).

= 2(Ep(XY )− Ep(X)Ep(Y )).

Now suppose that the result is valid for all n < k and that X and Y are
increasing functions that only depend on the states of ω1, ..., ωk. Then

Ep(XY ) = Ep
(
Ep(XY |ω1, ..., ωk−1)

)
= Ep

(
Ep(X|ω1, ..., ωk−1)Ep(Y |ω1, ..., ωk−1)

)
,

since, for fixed ω1, ..., ωk−1, we have that X and Y are increasing in ωk, and
so, we may apply the case k = 1. We also have that Ep(X|ω1, ..., ωk−1) is
an increasing function in ω, ..., ωk−1, and the same is valid for Y . So, by the
induction hypothesis

Ep(XY ) = Ep
(
Ep(X|ω1, ..., ωk−1)Ep(Y |ω1, ..., ωk−1)

)
)

≥ Ep
(
Ep(X|ω1, ..., ωk−1)

)
Ep
(
Ep(Y |ω1, ..., ωk−1)

)
= Ep(X)Ep(Y ).

and we have proved our desired induction. We may now lift the condition that
X and Y depend only on finitely many elements of Ω. Suppose, then that X
and Y obey the conditions of the theorem. Let ω1, ω2, ... be a fixed ordering of
the elements of Ωn. Define Xn := Ep(X|ω1, ..., ωn), and Yn := Ep(Y |ω1, ..., ωn)).
For each n, Xn and Yn are increasing functions of the states ω1, ..., ωn, and so
we may apply the previous result to yield that

Ep(XnYn) ≥ Ep(Xn)Ep(Yn).

Now we may use the Martingale Convergence Theorem, stated in Section 2,
since X and Y are both bounded, and ω1, ..., ωn is a filtration, we get that

Xn → X, a.s,
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and
Yn → Y, a.s.

So, by dominated convergence, the left-hand side converges to Ep(XY ), and
we finally have that

Ep(XY ) ≥ Ep(X)Ep(Y ),

concluding our proof. �

It is immediate from this that if we take x, y, z, w in Z2, or T, and even
points in R2 for a fixed Voronoi Tiling, and define A to be the event that there
is a red path from x to y, and B the event that there is a blue path from z to
w. Then P(A ∩ B) ≥ P (A).P (B). So this applications of the FKG Inequality
are well formalized.

For the annealed Voronoi Percolation we will follow an argument from
[4]. But first we need to formalize some previous notions to this context.

Definição A.11 Consider P to be the Poisson Process generated in the plane.
Now, with the Voronoi Tessellation in mind, we color each tile red with
probability p and each tile blue with probability 1 − p. This will leave us
with a partition in two processes (P+,P−). Consider E to be an increasing
event, if for every configuration ω1 = (X+

1 , X
−
1 ) in E and every configuration

ω2 = (X+
2 , X

−
2 ), with X+

1 ⊆ X+
2 and X−1 ⊇ X−2 , we have ω2 ∈ E. This

means that E is preserved when adding red points, or deleting blue points. The
definition of an increasing function f(P+,P−) follows the same as before.

Lemma A.12 (FKG for annealed Voronoi Percolation) Let Ei =
Ei(P+,P−), i = 1, 2, be two increasing events. Then for any 0 ≤ p ≤ 1,
we have that

Pp(E1 ∩ E2) ≥ Pp(E1)Pp(E2),

where Pp is the probability measure associated to the Poisson Process in the
plane with p-red coloring as denoted before.

Proof. Fixing P−, for each i, gives us that 1Ei is increasing in P+. So by the
standard FKG inequality

Ep(1E11E|P−) ≥ Ep(1E1|P−)Ep(1E2|P−),

for every P−. Taking, over P−, the expectation on both sides, we get that :

Ep(1E11E2) ≥ Ep(Ep(1E1|P−)Ep(1E2|P−)).
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But the functions Ep(1Ei|P−) are both decreasing in P−. So we may use the
previous theorem again to finally get that:

Ep(Ep(1E1|P−)Ep(1E2|P−)) ≥ Ep(Ep(1E1|P−))Ep(Ep(1E2|P−)) = Ep(1E1)Ep(1E2).

So we conclude our lemma. �

Our next inequality will be the celebrated van der Berg’s, Kesten’s
inequality. The way it is stated here, and the proof of it may be found in
[12].

Let A and B be two increasing events. For ω ∈ Ωn and a set S ⊆ [n]
define ωS(x) = ω(x) if x ∈ S and ωS(x) = −1 otherwise. We define :

A ◦B := {ω ∈ Ωn : ∃S ⊆ {1, ..., n} such that ωS ∈ A and ω[n]\S ∈ B}.

Theorem A.13 (The BK Inequality for annealed Voronoi Percolation)
Let A and B be two red-increasing events. Then

PPo(A ◦B) ≤ PPo(A).PPo(B).

Now we will state and prove a very simple but useful inequality. This can
be proved in any context that the FKG inequality is valid, since it is a direct
application of it. We particularly use it in the context of Percolation on Z2 and
annealed Voronoi Percolation on R2.
Theorem A.14 (The Square Root Trick) Let A1, ..., An be increasing
events and write A := P(A1 ∪ ... ∪ An) ≥ p. We have that

max1≤i≤nPp(Ai) ≥ 1− (1− Pp(A))1/n.

Proof. First note that

Pp(A) = 1− Pp(Ac1 ∩ ... ∩ Acn).

Now by the FKG inequality

Pp(A) ≤ 1− Pp(Ac1)...Pp(Acn) (5)

≤ 1− (1−max1≤i≤nPp(Ai))n, (6)

and thus we conclude the proof. �
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